【題目】由于往屆高三年級數(shù)學(xué)學(xué)科的學(xué)習(xí)方式大都是“刷題一講題一再刷題”的模式,效果不理想,某市一中的數(shù)學(xué)課堂教改采用了“記題型一刷題一檢測效果”的模式,并記錄了某學(xué)生的記題型時間(單位:)與檢測效果的數(shù)據(jù)如下表所示.
記題型時間 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
檢測效果 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)據(jù)統(tǒng)計表明,與之間具有線性相關(guān)關(guān)系,請用相關(guān)系數(shù)加以說明(若,則認(rèn)為與有很強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有很強(qiáng)的線性相關(guān)關(guān)系);
(2)建立關(guān)于的回歸方程,并預(yù)測該學(xué)生記題型的檢測效果;
(3)在該學(xué)生檢測效果不低于3.6的數(shù)據(jù)中任取2個,求檢測效果均高于4.4的概率.
參考公式:回歸直線中斜率和截距的最小二乘估計分別為,
,相關(guān)系數(shù)
參考數(shù)據(jù):,,,.
【答案】(1),與有很強(qiáng)的線性相關(guān)關(guān)系.(2)關(guān)于的回歸方程為,預(yù)測值為(3)
【解析】
(1)求出相關(guān)系數(shù)即可得解;
(2)由圖表信息求出關(guān)于的回歸方程;
(3)先求出各種情況的基本事件的個數(shù),再利用古典概型的概率求法,運算即可得解.
(1)由題得,
,
所以,
所以與有很強(qiáng)的線性相關(guān)關(guān)系.
(2)由(1)可得,
所以,
所以關(guān)于的回歸方程為.
當(dāng)時,,
所以預(yù)測該學(xué)生記題型的檢測效果約為6.3.
(3)由題知該學(xué)生檢測效果不低于3.6的數(shù)據(jù)有5個,任取2個數(shù)據(jù)有,,,,,,,,,共10種情況,其中檢測效果均高于4.4的有,,,共3種結(jié)果,
故所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:如果對任意的x1,x2∈R,都有f(),則稱函數(shù)f(x)是R上的凹函數(shù),已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0)
(1)當(dāng)a=1,x∈[﹣2,2]時,求函數(shù)f(x)的值域;
(2)當(dāng)a=1時,試判斷函數(shù)f(x)是否為凹函數(shù),并說明理由;
(3)如果函數(shù)f(x)對任意的x∈[0,1]時,都有|f(x)|≤1,試求實數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時, .
(1)直接寫出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,若存在閉區(qū)間,使得函數(shù)滿足:(1)在上是單調(diào)函數(shù);(2)在上的值域是,則稱區(qū)間是函數(shù)的“和諧區(qū)間”,下列結(jié)論錯誤的是( )
A.函數(shù)存在“和諧區(qū)間”
B.函數(shù)不存在“和諧區(qū)間”
C.函數(shù)存在“和諧區(qū)間”
D.函數(shù)(,)不存在“和諧區(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).
(1)令,若對任意的恒成立,求實數(shù)的值;
(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,圓以極坐標(biāo)系中的點為圓心,為半徑.
(1)求圓的極坐標(biāo)方程;
(2)判斷直線與圓之間的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com