已知等比數(shù)列的各項(xiàng)均為正數(shù),,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè).證明:為等差數(shù)列,并求的前項(xiàng)和.
(I);(II).
解析試題分析:(I)依據(jù)已知數(shù)列為等比數(shù)列,求出首項(xiàng)和公比,根據(jù)寫出通項(xiàng)公式;(II)根據(jù)等差數(shù)列定義證明數(shù)列為等差數(shù)列,再求和.
試題解析:(Ⅰ)解:設(shè)等比數(shù)列的公比為,依題意 . 1分
因?yàn)?,,
兩式相除得 , 3分
解得 , 舍去 . 4分
所以 . 6分
所以數(shù)列的通項(xiàng)公式為 . 7分
(Ⅱ)解:由(Ⅰ)得 . 9分
因?yàn)?,
所以數(shù)列是首項(xiàng)為,公差為的等差數(shù)列. 11分
所以 . 13分
考點(diǎn):1等比數(shù)列通項(xiàng)公式;2.等差數(shù)列求和公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若是常數(shù),問當(dāng)滿足什么條件時(shí),函數(shù)有最大值,并求出取最大值時(shí)的值;
(2)是否存在實(shí)數(shù)對同時(shí)滿足條件:(甲)取最大值時(shí)的值與取最小值的值相同,(乙)?
(3)把滿足條件(甲)的實(shí)數(shù)對的集合記作A,設(shè),求使的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,.
(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,, 為數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等比數(shù)列, 其前項(xiàng)和為, 已知, 且對于任意的有, , 成等差;求數(shù)列的通項(xiàng)公式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an},其前n項(xiàng)和為Sn.
(1)若對任意的n∈N,a2n﹣1,a2n+1,a2n組成公差為4的等差數(shù)列,且,求n的值;
(2)若數(shù)列{}是公比為q(q≠﹣1)的等比數(shù)列,a為常數(shù),求證:數(shù)列{an}為等比數(shù)列的充要條件為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在等比數(shù)列中,,且是和的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com