有以下三個關于圓錐曲線的命題:
①設A、B是兩定點,k為非零常數(shù),|
PA
|-|
PB
|=k,則動點P的軌跡為雙曲線;
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.
其中是真命題的序號為
 
考點:命題的真假判斷與應用
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)根據(jù)雙曲線的定義知①不正確,(2)解方程知兩根,一根大于0作雙曲線的離心率,一根小于0作橢圓的離心率,判定②正確;,(3)求出雙曲線的焦點與橢圓的焦點,判定③正確.
解答: 解:①平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)k(k<|F1F2|)的點的軌跡叫做雙曲線,
      當0<k<|AB|時是雙曲線的一支,當k=|AB|時,表示射線,∴①不正確;
   ②方程2x2-5x+2=0的兩根是2和
1
2
,2可作為雙曲線的離心率,
1
2
可作為橢圓的離心率,②正確;
   ③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1的焦點都是(±
34
,0),有相同的焦點,③正確;
故答案為;②③.
點評:本題考查了橢圓與雙曲線的定義、焦點坐標和離心率等知識,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列各組函數(shù)是同一函數(shù)的組數(shù)是( 。
①f(x)=4x與g(x)=22x;         
②f(x)=
3x3
與g(x)=
x2

③f(x)=
-2x3
與g(x)=-x
-2x
;
④f(x)=
x2-1
x-1
與g(x)=t+1.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={y|y=x2-2};B={ y|y=-x2+2},則A∩B=( 。
A、{(-
2
,0),(
2
,0)}
B、[-
2
2
]
C、[-2,2]
D、{-
2
,
2
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一點.若PA=AC=a,則當△MBD的面積為最小值時,直線AC與平面MBD所成的角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,a3=5,S6=36,
(1)求數(shù)列{an}的通項公式;
(2)設bn=2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某生產(chǎn)車間的生產(chǎn)技術成熟,產(chǎn)品質(zhì)量穩(wěn)定,為了掌握產(chǎn)品質(zhì)量情況,前后進行了5次抽檢,每次抽取樣本10件,檢查情況如下表(產(chǎn)品質(zhì)量等級僅分為一等品和二等品兩種)
抽檢次數(shù)第1次第2次第3次第4次第5次
二等品個數(shù)01211
(1)以樣本中二等品的頻率作為產(chǎn)品總體中二等品的概率,求從產(chǎn)品中任取3件恰有1件是二等品的概率;
(2)在第3次抽檢的樣本中(含2個二等品),任取3件,其中二等品的件數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3x2-4,x>0
2
,x=0
-3x2+3,x<0
,那么f{f[f(-1)]}=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①如果平面α與平面β相交,那么平面α內(nèi)所有的直線都與平面β相交;
②如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β;
③如果平面α⊥平面β,那么平面α內(nèi)與它們的交線不垂直的直線與平面β也不垂直;
④如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β.
真命題的序號是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

武漢外國語學校從參加高二年級期末考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答如下問題:
(1)求分數(shù)在[120,130)內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)用分層抽樣的方法在分數(shù)段[110,130)的學生中抽取一個容量為6的樣本,將樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

同步練習冊答案