分析 (1)先求出函數(shù)f(x)的定義域,再求出函數(shù)f(x)的導(dǎo)數(shù),求函數(shù)f(x)的單調(diào)區(qū)間即可;
(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的極值即可;
(3)所證不等式等價為$ln\frac{a}+\frac{a}-1≥0$,而f(x)=ln(1+x)+$\frac{1}{x+1}$-1,設(shè)t=x+1,則F(t)=lnt+$\frac{1}{t}$-1,由(1)結(jié)論可得,F(xiàn)(t)在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增,從而得到證明.
解答 解:(1)∵函數(shù)f(x)=ln(x+1)-$\frac{x}{x+1}$,
∴f′(x)=$\frac{1}{x+1}$-$\frac{1}{{(x+1)}^{2}}$,
由f′(x)>0⇒x>0;由f′(x)<0⇒-1<x<0;
∴f(x)的單調(diào)增區(qū)間(0,+∞),單調(diào)減區(qū)間(-1,0),
(2)由(1)得:f(x)有極小值,極小值是f(0)=0;
證明:(3)所證不等式等價為$ln\frac{a}+\frac{a}-1≥0$,
而$f(x)=ln(1+x)+\frac{1}{x+1}-1$,
設(shè)t=x+1,則$F(t)=lnt+\frac{1}{t}-1$,
由(1)結(jié)論可得,F(xiàn)(t)在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增,
由此F(t)min=F(1)=0,
所以F(t)≥F(1)=0,
即$F(t)=lnt+\frac{1}{t}-1≥0$,
記$t=\frac{a}$代入得證.
點評 本小題主要考查函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①③④ | C. | ①②④ | D. | ③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com