16.已知函數(shù)f(x)=2x2+ax-b(a,b∈R)的兩個(gè)零點(diǎn)分別在區(qū)間$(\frac{1}{2},1)$和(1,2)內(nèi),則z=a+b的最大值為( 。
A.0B.-4C.$-\frac{14}{3}$D.-6

分析 由兩個(gè)零點(diǎn)分別在區(qū)間$(\frac{1}{2},1)$和(1,2)內(nèi),根據(jù)零點(diǎn)存在定理,易得:f($\frac{1}{2}$)>0,f(1)<0,f(2)>0,由此我們易構(gòu)造一個(gè)平面區(qū)域,利用線性規(guī)劃知識(shí)即可求出答案.

解答 解:∵函數(shù)f(x)=2x2+ax-b(a,b∈R)的兩個(gè)零點(diǎn)分別在區(qū)間$(\frac{1}{2},1)$和(1,2)內(nèi),
∴f($\frac{1}{2}$)>0,f(1)<0,f(2)>0,
∴$\left\{\begin{array}{l}{\frac{1}{2}+\frac{1}{2}a-b>0}\\{2+a-b<0}\\{8+2a-b>0}\end{array}\right.$,
平面區(qū)域如圖所示,三個(gè)交點(diǎn)坐標(biāo)分別為A(-3,-1),
C(-6,-4),B(-5,-2),
∴z=a+b在A(-3,-1)處取得最大值-4,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)零點(diǎn)的求法及零點(diǎn)存在定理,線性規(guī)劃的應(yīng)用,其中連續(xù)函數(shù)在區(qū)間(a,b)滿足f(a)•f(b)<0,則函數(shù)在區(qū)間(a,b)有零點(diǎn),是判斷函數(shù)零點(diǎn)存在最常用的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x2-(m+1)x+m,g(x)=-(m+4)x-4+m,m∈R.
(1)比較f(x)與g(x)的大;
(2)解不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)集合A={x|y=log2(3-x)},B={y|y=2x,x∈[0,2]}則A∩B=( 。
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖點(diǎn)G是三角形ABO的重心,PQ是過(guò)G的分別交OA,OB于P,Q的一條線段,且OP=mOA,OQ=nOB,(m,n∈R).求證$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρsin2θ=4acosθ(a>0).
(1)求直線1的普通方程及曲線C的普通方程;
(2)若直線l與曲線C相交于M,N兩點(diǎn),且|MN|=8$\sqrt{5}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.將參數(shù)方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 為參數(shù),t 為常數(shù))化為普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若曲線C1:x2+y2-2x=0與曲線C2:mx2-xy+mx=0有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.(-∞,0)∪(0,+∞)D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求C1、C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2交于A、B兩點(diǎn),且定點(diǎn)P的坐標(biāo)為(2,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,E、F分別為BC、CC1的中點(diǎn),則直線EF與平面BB1D1D所成角的正弦值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案