A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
分析 根據(jù)三角形內(nèi)角和定理和誘導(dǎo)公式化簡,結(jié)合三角函數(shù)的性質(zhì),可知x=$\frac{5π}{12}$時(shí),f(x)取得最值.可得A的值.
解答 解:由函數(shù)f(x)=2sin(x-A)cosx+sin(B+C)
=2sinxcosxcosA-2cos2xsinA+sinA=sin2xcosA-sinA(cos2x+1)+sinA=sin2xcosA-cos2xsinA
∵函數(shù)f(x)關(guān)于直線x=$\frac{5π}{12}$對(duì)稱,
當(dāng)x=$\frac{5π}{12}$時(shí),f(x)=sin$\frac{5π}{6}$cosA-cos$\frac{5π}{6}$sinA=$\frac{1}{2}$cosA+$\frac{\sqrt{3}}{2}$sinA=sin(A+$\frac{π}{6}$)
若x=$\frac{5π}{12}$時(shí),f(x)取得最小值,即$\frac{π}{6}+A=kπ-\frac{π}{2}$,k∈Z.
∵0<A<π
∴A=$\frac{π}{3}$.
若x=$\frac{5π}{12}$時(shí),f(x)取得最大值,即$\frac{π}{6}+A=kπ+\frac{π}{2}$,k∈Z.
∵0<A<π
∴A=$\frac{π}{3}$.
綜上可得A=$\frac{π}{3}$.
故選D
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{1}{3}$ | D. | $-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{4}{5}$ | B. | $\frac{4}{3}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | [-1,1] | C. | $[{-\sqrt{2},\sqrt{2}}]$ | D. | $({-\sqrt{2},\sqrt{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com