分析 (1)根據(jù)看臺(tái)的面積比得出AB,AC的關(guān)系,代入三角形的面積公式求出AB,AC,再利用余弦定理計(jì)算BC;
(2)根據(jù)(1)得出造價(jià)關(guān)于θ的函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求出最小造價(jià).
解答 解:(1)∵看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3倍,
∴$\frac{1}{2}π$($\frac{AB}{2}$)2=3×$\frac{1}{2}π$($\frac{AC}{2}$)2,∴AB=$\sqrt{3}$AC,
∵S△ABC=$\frac{1}{2}AB•AC•sinθ$=$\frac{\sqrt{3}}{2}$AC2sinθ=400$\sqrt{3}$,
∴AC2=$\frac{800}{sinθ}$,∴AB2=$\frac{2400}{sinθ}$,
在△ABC中,由余弦定理得BC2=AB2+AC2-2AB•ACcosθ=$\frac{3200-1600\sqrt{3}cosθ}{sinθ}$,
∴BC=40$\sqrt{\frac{2-\sqrt{3}cosθ}{sinθ}}$.
(2)設(shè)表演臺(tái)的造價(jià)為y萬(wàn)元,則y=120$\sqrt{\frac{2-\sqrt{3}cosθ}{sinθ}}$,
設(shè)f(θ)=$\frac{2-\sqrt{3}cosθ}{sinθ}$(0<θ<π),則f′(θ)=$\frac{\sqrt{3}-2cosθ}{si{n}^{2}θ}$,
∴當(dāng)0$<θ<\frac{π}{6}$時(shí),f′(θ)<0,當(dāng)$\frac{π}{6}<θ<π$時(shí),f′(θ)>0,
∴f(θ)在(0,$\frac{π}{6}$)上單調(diào)遞減,在($\frac{π}{6}$,π)上單調(diào)遞增,
∴當(dāng)θ=$\frac{π}{6}$時(shí),f(θ)取得最小值f($\frac{π}{6}$)=1,
∴y的最小值為120,即表演臺(tái)的最小造價(jià)為120萬(wàn)元.
點(diǎn)評(píng) 本題考查了解三角形,函數(shù)最值計(jì)算,余弦定理,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\sqrt{3}$-1 | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com