20.在水域上建一個(gè)演藝廣場(chǎng),演藝廣場(chǎng)由看臺(tái)Ⅰ,看臺(tái)Ⅱ,三角形水域ABC,及矩形表演臺(tái)BCDE四個(gè)部分構(gòu)成(如圖),看臺(tái)Ⅰ,看臺(tái)Ⅱ是分別以AB,AC為直徑的兩個(gè)半圓形區(qū)域,且看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3倍,矩形表演臺(tái)BCDE 中,CD=10米,三角形水域ABC的面積為$400\sqrt{3}$平方米,設(shè)∠BAC=θ.
(1)求BC的長(zhǎng)(用含θ的式子表示);
(2)若表演臺(tái)每平方米的造價(jià)為0.3萬(wàn)元,求表演臺(tái)的最低造價(jià).

分析 (1)根據(jù)看臺(tái)的面積比得出AB,AC的關(guān)系,代入三角形的面積公式求出AB,AC,再利用余弦定理計(jì)算BC;
(2)根據(jù)(1)得出造價(jià)關(guān)于θ的函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求出最小造價(jià).

解答 解:(1)∵看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3倍,
∴$\frac{1}{2}π$($\frac{AB}{2}$)2=3×$\frac{1}{2}π$($\frac{AC}{2}$)2,∴AB=$\sqrt{3}$AC,
∵S△ABC=$\frac{1}{2}AB•AC•sinθ$=$\frac{\sqrt{3}}{2}$AC2sinθ=400$\sqrt{3}$,
∴AC2=$\frac{800}{sinθ}$,∴AB2=$\frac{2400}{sinθ}$,
在△ABC中,由余弦定理得BC2=AB2+AC2-2AB•ACcosθ=$\frac{3200-1600\sqrt{3}cosθ}{sinθ}$,
∴BC=40$\sqrt{\frac{2-\sqrt{3}cosθ}{sinθ}}$.
(2)設(shè)表演臺(tái)的造價(jià)為y萬(wàn)元,則y=120$\sqrt{\frac{2-\sqrt{3}cosθ}{sinθ}}$,
設(shè)f(θ)=$\frac{2-\sqrt{3}cosθ}{sinθ}$(0<θ<π),則f′(θ)=$\frac{\sqrt{3}-2cosθ}{si{n}^{2}θ}$,
∴當(dāng)0$<θ<\frac{π}{6}$時(shí),f′(θ)<0,當(dāng)$\frac{π}{6}<θ<π$時(shí),f′(θ)>0,
∴f(θ)在(0,$\frac{π}{6}$)上單調(diào)遞減,在($\frac{π}{6}$,π)上單調(diào)遞增,
∴當(dāng)θ=$\frac{π}{6}$時(shí),f(θ)取得最小值f($\frac{π}{6}$)=1,
∴y的最小值為120,即表演臺(tái)的最小造價(jià)為120萬(wàn)元.

點(diǎn)評(píng) 本題考查了解三角形,函數(shù)最值計(jì)算,余弦定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,在直三棱柱ABC-A1B1C1中,若四邊形AA1C1C是邊長(zhǎng)為4的正方形,且AB=3,BC=5,M是AA1的中點(diǎn),則三棱錐A1-MBC1的體積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過(guò)12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過(guò)12噸且不超過(guò)14噸時(shí),超過(guò)12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過(guò)14噸時(shí),超過(guò)14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過(guò)12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是$\widehaty=2x+33$.若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a,b,c為正實(shí)數(shù),且a3+b3+c3=a2b2c2,求證:a+b+c≥3$\root{3}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上且周期為4的偶函數(shù),當(dāng)x∈[2,4]時(shí),$f(x)=|{{{log}_4}({x-\frac{3}{2}})}|$,則$f({\frac{1}{2}})$的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-2,0),F(xiàn)2(2,0)的距離之積等于9的點(diǎn)的軌跡.給出下列命題:
①曲線C過(guò)坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)軸對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的周長(zhǎng)有最小值10;
④若點(diǎn)P在曲線C上,則△F1PF2面積有最大值$\frac{9}{2}$.
其中正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=(x-3)ex+ax,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a∈[0,e)時(shí),設(shè)函數(shù)f(x)在(1,+∞)上的最小值為g(a),求函數(shù)g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1,F(xiàn)2為左,右焦點(diǎn),以F1,F(xiàn)2為直徑的圓與橢圓在第一、三象限的交點(diǎn)分別為A、B,若直線AB與直線x+$\sqrt{3}$y-7=0互相垂直,則橢圓的離心率為(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$-1D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知i是虛數(shù)單位,復(fù)數(shù)z1=3+yi(y∈R),z2=2-i,且$\frac{z_1}{z_2}=1+i$,則y=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案