12.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{3\sqrt{3}}{2}$B.2$\sqrt{3}$C.$\frac{5\sqrt{3}}{2}$D.3$\sqrt{3}$

分析 由三視圖知幾何體是一個三棱柱,且在一個角上截去一個三棱錐,并求出幾何元素的長度,利用柱體、椎體的體積公式計算即可.

解答 解:由三視圖知幾何體是一個三棱柱,且在一個角上截去一個三棱錐C-ABD,
側(cè)棱與底面垂直,底面是以2為邊長的等邊三角形,高為3,
且D是中點,則BD=1,
∴幾何體的體積V=$\frac{1}{2}×2×\sqrt{3}×3-\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×3$
=$3\sqrt{3}-\frac{\sqrt{3}}{2}$=$\frac{5\sqrt{3}}{2}$,
故選:C.

點評 本題考查三視圖求幾何體的體積,三視圖正確復原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x),g(x)在(3,7)上均可導,且f′(x)<g′(x),則當3<x<7時,有( 。
A.f(x)>g(x)B.f(x)+g(3)<g(x)+f(3)C.f(x)<g(x)D.f(x)+g(7)<g(x)+f(7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設向量$\overrightarrow{a}$、$\overrightarrow$,則“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”是“$\overrightarrow{a}$與$\overrightarrow$共線”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.作出函數(shù)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)在長度為一個周期的閉區(qū)間上的簡圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若M∈平面α,M∈平面β,則α與β的位置關(guān)系是( 。
A.平行B.相交C.異面D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{2x-y-5≤0}\end{array}\right.$則z=x2+y2的最大值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=msin(ωx)cos(ωx)+nsin2(ωx)(ω>0)關(guān)于點($\frac{π}{12}$,1)對稱.
(Ⅰ)若m=4,求f(x)的最小值;
(Ⅱ)若函數(shù)f(x)的最小正周期是一個三角形的最大內(nèi)角的值,又f(x)≤f($\frac{π}{4}$)對任意實數(shù)x成立,求函數(shù)f(x)的解析式,并寫出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=cosx(sinx-cosx).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當$x∈[{-\frac{π}{4},\frac{π}{4}}]$時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出下列四個命題,其中正確的命題是( 。
①若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC是等邊三角形;
②若sinA=cosB,則△ABC是直角三角形;
③若cosAcosBcosC<0,則△ABC是鈍角三角形;
④若sin2A=sin2B,則△ABC是等腰三角形.
A.①②B.③④C.①③D.②④

查看答案和解析>>

同步練習冊答案