7.已知橢圓$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,且a2=2b.
(1)求橢圓的方程;
(2)若直線l:x-y+m=0與橢圓交于A,B兩點(diǎn),且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

分析 (1)由題意列關(guān)于a,b,c的方程組,求解得到a,b,c的值,則橢圓方程可求;
(2)聯(lián)立直線方程與橢圓方程,利用根與系數(shù)的關(guān)系求得A、B中點(diǎn)的坐標(biāo),代入圓的方程求得m的值.

解答 解:(1)由題意,得$\left\{\begin{array}{l}{{a}^{2}=2b}\\{{a}^{2}-^{2}={c}^{2}}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\sqrt{2}}\\{b=1}\\{c=1}\end{array}\right.$.
∴橢圓的標(biāo)準(zhǔn)方程為${x}^{2}+\frac{{y}^{2}}{2}=1$;
(2)設(shè)A(x1,y1),B(x2,y2),線段AB的中點(diǎn)M(x0,y0),
聯(lián)立$\left\{\begin{array}{l}{x-y+m=0}\\{{x}^{2}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得3x2+2mx+m2-2=0.
則${x}_{1}+{x}_{2}=-\frac{2m}{3}$,${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{m}{3}$,${y}_{0}={x}_{0}+m=\frac{2m}{3}$.
∴M($-\frac{m}{3},\frac{2m}{3}$).
∵M(jìn)在圓x2+y2=5上,∴(-$\frac{m}{3}$)2+($\frac{2m}{3}$)2=5,
解得:m=±3.

點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)α,β是兩個(gè)不同的平面,a,b是兩條不同的直線,下列四個(gè)命題中正確的命題是( 。
A.若a∥α,b∥α,則a∥bB.若a∥α,b∥β,a∥b,則α∥β
C.若a⊥α,a?β,則α⊥βD.若a,b在α內(nèi)的射影相互垂直,則a⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=1,2cosC+c=2b.
(Ⅰ)求A;
(Ⅱ)若b=$\frac{1}{2}$,求sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}+2n$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若${b_n}={2^n}$,求數(shù)列{anbn2}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.f(x)=alnx+$\frac{1-a}{2}$x2-x.
(Ⅰ)當(dāng)a<1時(shí),討論f(x)在0,+∞)上的單調(diào)性;
(Ⅱ)當(dāng)a=1時(shí),對(duì)?x>0,bx+1≥f(x)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如表是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù).由散點(diǎn)圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是$\stackrel{∧}{y}$=-0.7x+a,則a=( 。
月份x1234
用水量y4.5432.5
A.10.5B.5.15C.5.2D.5.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若命題p:?x∈N,x2-3x+2>0,則¬p為( 。
A.?x∈N,x2-3x+2≤0B.?x∉N,x2-3x+2≤0C.?x∈N,x2-3x+2≤0D.?x∈N,x2-3x+2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知三點(diǎn)A(-1,-1),B(1,x),C(2,5)共線,則x的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow a=({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$,向量$\overrightarrow b=({-1,0})$,向量$\overrightarrow c$滿足$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$.
(1)若$\overrightarrow d=k\overrightarrow a-\overrightarrow b$,且$\overrightarrow a⊥\overrightarrow d$,求$|\overrightarrow d|$的值;
(2)若$\overrightarrow a-k\overrightarrow b$與$2\overrightarrow b+\overrightarrow c$共線,求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案