【題目】定義:如果一個數(shù)列從第2項起,每一項與它前一項的差都大于或等于2,則稱這個數(shù)列為“D數(shù)列”.
(1)若首項為1的等差數(shù)列的每一項均為正整數(shù),且數(shù)列為“D數(shù)列”,其前n項和滿足(),求數(shù)列的通項公式;
(2)已知等比數(shù)列的每一項均為正整數(shù),且數(shù)列為“D數(shù)列”,,設(),試判斷數(shù)列是否為“D數(shù)列”,并說明理由.
【答案】(1)(2)是,理由見解析
【解析】
(1) 設的公差為d,則,由每一項均為正整數(shù),即 ,可求出.
(2).根據(jù)條件有,,,所以,在數(shù)列中,為最小項,由數(shù)列為“D數(shù)列”可知,只需,可求出,或,,然后再分別
判斷是否恒成立.
(1)設等差數(shù)列的公差為d,則,由,得.
由題意得,對均成立,
當時,上式成立.當時,,
又,∴,∴
∴等差數(shù)列的通項公式為.
(2)設等比數(shù)列的公比為q,則,
∵數(shù)列的每一項均為正整數(shù),且,
∴,且q為整數(shù)
∵.
∴在數(shù)列中,為最小項,由數(shù)列為“D數(shù)列”可知,只需.
即,又,即.
由數(shù)列的每一項均為正整數(shù),可得,∴,或,.①
當,時,,則.
令(),
則
∴.
∴數(shù)列為遞增數(shù)列,即.又.
∴對任意的都有.
∴數(shù)列是“D數(shù)列”. ②
當,時,,則.
令().
=
∴
∴數(shù)列為遞增數(shù)列,即.又.
∴對任意的都有,∴數(shù)列是“D數(shù)列”.綜上,數(shù)列是“D數(shù)列”
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐的棱長均為6,其內(nèi)有個小球,球與三棱錐的四個面都相切,球與三棱錐的三個面和球都相切,如此類推,…,球與三棱錐的三個面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足
(1)當時,寫出所有可能的值;
(2)當時,若且對任意恒成立,求數(shù)列的通項公式;
(3)記數(shù)列的前項和為,若分別構成等差數(shù)列,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的兩焦點與短軸兩端點圍成面積為12的正方形.
(1)求橢圓C的標準方程;
(2)我們稱圓心在橢圓上運動,半徑為的圓是橢圓的“衛(wèi)星圓”.過原點O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓C于A、B兩點,若直線、的斜率為、,當時,求此時“衛(wèi)星圓”的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個單位,得到一幾何體.現(xiàn)有一個與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費比率 |
該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:
消費次數(shù) | 次 | 次 | 次 | 次 | 次 |
人數(shù) |
假設汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(2)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,設該公司為一位會員服務的平均利潤為元,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標依次是,(如圖所示,坐標以已知條件為準),表示青蛙從點到點所經(jīng)過的路程.
(1)若點為拋物線()準線上一點,點均在該拋物線上,并且直線經(jīng)過該拋物線的焦點,證明.
(2)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出(不需證明);
(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“雙11”促銷活動中,某商場為了吸引顧客,搞好促銷活動,采用“雙色球”定折扣的方式促銷,即:在紅、黃的兩個紙箱中分別裝有大小完全相同的紅、黃球各5個,每種顏色的5個球上標有1,2,3,4,5等5個數(shù)字,顧客結賬時,先分別從紅、黃的兩個紙箱中各取一球,按兩個球的數(shù)字之和為折扣打折,如,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com