【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

消費次第

收費比率

該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:

消費次數(shù)

人數(shù)

假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;

2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會員服務(wù)的平均利潤為元,求的分布列和數(shù)學(xué)期望.

【答案】1元(2)答案見解析

【解析】

1)第一次消費為元,利潤為元, 第二次消費元,利潤為元,即可求得答案;

2)因為/次收費,公司成本為元,設(shè)該公司為一位會員服務(wù)的平均利潤為元,根據(jù)頻率計算公式求出頻率,即可求得的分布列和數(shù)學(xué)期望,即可求得答案.

1 第一次消費為元,利潤為元;

第二次消費元,利潤為元;

兩次消費的平均利潤為.

2 /次收費,公司成本為元,

消費次平均利潤為

消費次平均利潤為

消費次平均利潤為

消費次平均利潤為

消費次平均利潤為

若該會員消費次,則,;

若該會員消費次,則,;

若該會員消費次,則,;

若該會員消費次,則,;

若該會員消費次,則,.

的分布列為:

的期望為().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游戲棋盤上標(biāo)有第、、、站,棋子開始位于第站,選手拋擲均勻硬幣進行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時,游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.

1)當(dāng)游戲開始時,若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學(xué)期望;

2)證明:;

3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目,A、B兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將A隊第六位選手的成績沒有給出,并且告知大家B隊的平均分比A隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得晉級”.

1)根據(jù)莖葉圖中的數(shù)據(jù),求出A隊第六位選手的成績;

2)主持人從A隊所有選手成績中隨機抽取2個,求至少有一個為晉級的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準(zhǔn)備某種商品各50.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點進行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則(

A.最少需要16次調(diào)動,有2種可行方案

B.最少需要15次調(diào)動,有1種可行方案

C.最少需要16次調(diào)動,有1種可行方案

D.最少需要15次調(diào)動,有2種可行方案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.

1)求的標(biāo)準(zhǔn)方程;

2)若動點外一點,且的兩條切線相互垂直,求的軌跡的方程;

3)設(shè)的另一個焦點為,過上一點的切線與(2)所求軌跡交于點,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】101日,某品牌的兩款最新手機(記為型號,型號)同時投放市場,手機廠商為了解這兩款手機的銷售情況,在101日當(dāng)天,隨機調(diào)查了5個手機店中這兩款手機的銷量(單位:部),得到下表:

手機店

型號手機銷量

6

6

13

8

11

型號手機銷量

12

9

13

6

4

(Ⅰ)若在101日當(dāng)天,從,這兩個手機店售出的新款手機中各隨機抽取1部,求抽取的2部手機中至少有一部為型號手機的概率;

(Ⅱ)現(xiàn)從這5個手機店中任選3個舉行促銷活動,用表示其中型號手機銷量超過型號手機銷量的手機店的個數(shù),求隨機變量的分布列和數(shù)學(xué)期望;

(III)經(jīng)測算,型號手機的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號手機銷量的方差,試給出表中5個手機店的型號手機銷售成本的方差的值.(用表示,結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(其中t為參數(shù)).現(xiàn)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ

(Ⅰ)寫出直線l普通方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)過點M-1,0)且與直線l平行的直線l1CA,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,直線,,設(shè)圓C的半徑為1,圓心在.

(1)若圓心C也在直線上,①求圓C的方程;

②過點作圓C的切線,求切線的方程;

(2)若圓在直線截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十三屆全國人大二次會議于201935日在京召開為了了解某校大學(xué)生對兩會的關(guān)注程度,學(xué)校媒體在開幕后的第二天,從全校學(xué)生中隨機抽取了180人,對是否收看2019年兩會開幕會情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

80

40

女生

30

30

1)根據(jù)上表說明,在犯錯誤的概率不超過1%的前提下,能否認(rèn)為該校大學(xué)生收看開幕會與性別有關(guān)?(計算結(jié)果精確到0.001

2)現(xiàn)從隨機抽取的學(xué)生中,采用按性別分層抽樣的方法選取6人,來參加2019年兩會的志愿者宣傳活動,若從這6人中隨機選取2人到各班級宣傳介紹,求恰好選到一名男生和一名女生的概率. ,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步練習(xí)冊答案