【題目】在平面直角坐標(biāo)系xoy中,直線,,設(shè)圓C的半徑為1,圓心在.

(1)若圓心C也在直線上,①求圓C的方程;

②過點(diǎn)作圓C的切線,求切線的方程;

(2)若圓在直線截得的弦長為,求圓C的方程.

【答案】1)①,②,(2

【解析】

1)①聯(lián)立求出圓心坐標(biāo),再根據(jù)半徑為即可寫出圓的標(biāo)準(zhǔn)方程.②分別討論斜率不存在和存在時(shí)的情況,利用直線和圓相切的關(guān)系即可求出切線方程.

2)首先設(shè)出圓心坐標(biāo),根據(jù)直線截得的弦長為,圓的半徑為,得到圓心到的距離為,再利用點(diǎn)到直線的距離公式即可求出圓心坐標(biāo)和圓的標(biāo)準(zhǔn)方程.

1)①由題知:.

所以圓心為,圓.

②當(dāng)斜率不存在時(shí),,

圓心的距離為,符合題意.

當(dāng)斜率存在時(shí),設(shè)切線為:.

,解得,即切線為:.

綜上所述,切線為:.

2)因?yàn)閳A心在上,設(shè)圓心為.

因?yàn)橹本截得的弦長為,圓的半徑為

所以圓心到的距離為.

所以,即,.

所以圓,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù)(其中a是實(shí)數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

消費(fèi)次第

收費(fèi)比率

該公司注冊(cè)的會(huì)員中沒有消費(fèi)超過次的,從注冊(cè)的會(huì)員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如下:

消費(fèi)次數(shù)

人數(shù)

假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤;

2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會(huì)員服務(wù)的平均利潤為元,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018、2019每高考數(shù)學(xué)全國Ⅰ卷中,第22題考查坐標(biāo)系和參數(shù)方程,第23題考查不等式選講.2018年髙考結(jié)束后,某校經(jīng)統(tǒng)計(jì)發(fā)現(xiàn):選擇第22題的考生較多并且得分率也較高.為研究2019年選做題得分情況,該校高三質(zhì)量檢測的命題完全采用2019年高考選做題模式,在測試結(jié)束后,該校數(shù)學(xué)教師對(duì)全校高三學(xué)生的選做題得分進(jìn)行抽樣統(tǒng)計(jì),得到兩題得分的統(tǒng)計(jì)表如下(已知每名學(xué)生只選做—道題):

第22題的得分統(tǒng)計(jì)表

得分

0

3

5

8

10

理科人數(shù)

50

50

75

125

200

文科人數(shù)

25

25

125

0

25

第23題的得分統(tǒng)計(jì)表

得分

0

3

5

8

10

理科人數(shù)

30

52

58

60

200

文科人數(shù)

5

10

10

5

70

(1)完成如下2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為“選做題的選擇”與“文、理科的科類”有關(guān);

選做22題

選做23題

總計(jì)

理科人數(shù)

文科人數(shù)

總計(jì)

(2)若以全體高三學(xué)生選題的平均得分作為決策依據(jù),如果你是考生,根據(jù)上面統(tǒng)計(jì)數(shù)據(jù),你會(huì)選做哪道題,并說明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖的空間幾何體中,四邊形為邊長為2的正方形,平面,,,且,.

1)求證:平面平面;

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解該校某年級(jí)學(xué)生的閱讀量(分鐘),隨機(jī)抽取了n名學(xué)生,調(diào)查他們一天的閱讀時(shí)間,統(tǒng)計(jì)結(jié)果下圖表所示:

組號(hào)

分組

男生

人數(shù)

男生人數(shù)占本

組人數(shù)的頻率

頻率分布直方圖

1

5

0.5

2

18

0.9

3

24

0.8

4

0.4

5

3

0.2

1)求出的值;

2天的閱時(shí)間不少于35分鐘稱為喜好閱讀者”.根據(jù)以上數(shù)據(jù),完成下面的列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為喜好閱讀者性別有關(guān)?

喜好閱讀者

非喜好閱讀者

合計(jì)

男生

女生

合計(jì)

附:(其中為樣本容量).

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD所在平面外一點(diǎn),且平面ABCD,,.

(1)求證:平面平面PCE;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,楔形幾何體由一個(gè)三棱柱截去部分后所得,底面側(cè)面,楔面是邊長為2的正三角形,點(diǎn)在側(cè)面的射影是矩形的中心,點(diǎn)上,且.

1)證明:平面;

2)求楔形幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點(diǎn),且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案