【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計該公司對每件包裹收取的快遞費的平均值;
(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
【答案】(1) ;(2)(i)15元;(ii)答案見解析.
【解析】試題分析: 先計算出包裹件數(shù)在之間的天數(shù)為,然后得到頻率,估計出概率,運用二項分布求出結(jié)果(2)運用公式求出每件包裹收取的快遞費的平均值(3)先將天數(shù)轉(zhuǎn)化為頻率,分別計算出不裁員和裁員兩種情況的利潤,從而作出比較
解析:(1)樣本包裹件數(shù)在之間的天數(shù)為,頻率,
故可估計概率為,
顯然未來天中,包裹件數(shù)在之間的天數(shù)服從二項分布,
即,故所求概率為.
(2)(i)樣本中快遞費用及包裹件數(shù)如下表:
包裹重量(單位: ) | |||||
快遞費(單位:元) | |||||
包裹件數(shù) |
故樣本中每件快遞收取的費用的平均值為(元),
故該公司對每件快遞收取的費用的平均值可估計為元.
(ii)根據(jù)題意及(2)(i),攬件數(shù)每增加,可使前臺工資和公司利潤增加(元),
將題目中的天數(shù)轉(zhuǎn)化為頻率,得
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) | |||||
頻率 |
若不裁員,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:
包裹件數(shù) (近似處理) | |||||
實際攬件數(shù) | |||||
頻率 | |||||
|
故公司平均每日利潤的期望值為(元);
若裁員人,則每天可攬件的上限為件,公司每日攬件數(shù)情況如下:
包裹件數(shù) (近似處理) | |||||
實際攬件數(shù) | |||||
頻率 | |||||
|
故公司平均每日利潤的期望值為(元).
因,故公司將前臺工作人員裁員人對提高公司利潤不利.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓O: 的右焦點為F,點B,C分別是橢圓O的上、下頂點,點P是直線l:y=-2上的一個動點(與y軸交點除外),直線PC交橢圓于另一點M.
(1)當(dāng)直線PM過橢圓的右焦點F時,求△FBM的面積;
(2)記直線BM,BP的斜率分別為k1,k2,求證:k1·k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高二年級組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時,乘坐定制公交的平均時間少于自行打車的平均時間?
(2)求該校學(xué)生參加考試平均時間的表達(dá)式:討論的單調(diào)性,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;
(2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點值(如:組區(qū)間[100,110)的中點值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動點到定點的距離與它到直線的距離相等.
(1)求動點的軌跡的方程;
(2)設(shè)動直線與曲線相切于點,與直線相交于點.
證明:以為直徑的圓恒過軸上某定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和滿足 .
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,
(I)求數(shù)列的前項和;
(II)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知稱為,的二維平方平均數(shù),稱為,的二維算術(shù)平均數(shù),稱為,的二維幾何平均數(shù),稱為,的二維調(diào)和平均數(shù),其中,均為正數(shù).
(1)試判斷與的大小,并證明你的猜想.
(2)令,,試判斷與的大小,并證明你的猜想.
(3)令,,,試判斷、、三者之間的大小關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經(jīng)過點,平行于的直線在軸上的截距為,直線交橢圓于兩個不同點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com