【題目】《九章算術》中有一分鹿問題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問各得幾何.”在這個問題中,大夫、不更、簪裊、上造、公士是古代五個不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成兩組(一組2人,一組3人),派去兩地執(zhí)行公務,則大夫、不更恰好在同一組的概率為( )
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則
(A)2號學生進入30秒跳繩決賽
(B)5號學生進入30秒跳繩決賽
(C)8號學生進入30秒跳繩決賽
(D)9號學生進入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的焦點是,準線是,拋物線上任意一點到軸的距離比到準線的距離少2.
(1)寫出焦點的坐標和準線的方程;
(2)已知點,若過點的直線交拋物線于不同的兩點(均與不重合),直線分別交于點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】成書于公元一世紀的我國經(jīng)典數(shù)學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,題目是:“今有池方一丈,點生其中央,出水一尺,引葭趕岸,適馬岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈(10尺),有棵蘆葦長在它的正中央,高出水面部分有1尺長,把蘆葦拉向岸邊,恰好碰到沿岸(池塘一邊的中點),則水深為__________尺,蘆葦長__________尺.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)的30個零件編號為01,02,…,19,30,現(xiàn)利用如下隨機數(shù)表從中抽取5個進行檢測. 若從表中第1行第5列的數(shù)字開始,從左往右依次讀取數(shù)字,則抽取的第5個零件編號為( )
34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 86 |
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A是圓O:x2+y2=4上一動點,過點A作AB⊥x軸,垂足為B,動點D滿足.
(1)求動點D的軌跡C的方程;
(2)垂直于x軸的直線M交軌跡C于M、N兩點,點P(3,0),直線PM與軌跡C的另一個交點為Q.問:直線NQ是否過一定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象在點處的切線的斜率為,求函數(shù)在上的最小值;
(2)若關于的方程在上有兩個解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定點的距離比到定直線的距離小.
(1)求點的軌跡的方程;
(2)過點任意作互相垂直的兩條直線,,分別交曲線于點,和,.設線段,的中點分別為,,求證:直線恒過一個定點;
(3)在(2)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)直線l與曲線C交于AB兩點,P(1,3),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com