【題目】已知橢圓經(jīng)過(guò)點(diǎn)離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過(guò)橢圓左焦點(diǎn)的直線(不經(jīng)過(guò)點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線:交于點(diǎn),記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說(shuō)明理由.
【答案】(1);(2)2.
【解析】
(1)根據(jù)橢圓經(jīng)過(guò)點(diǎn),離心率,結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出 、,即可得結(jié)果;(2)直線的方程為, 代入橢圓方程整理得,求得的坐標(biāo)為,求出 ,利用韋達(dá)定理化簡(jiǎn)可得,從而可得結(jié)果.
(1)由在橢圓上, .①
由已知得,
又, .②
②代入①解得.
橢圓的方程為.
(2)假設(shè)存在常數(shù),使得向量共線,
,即.
由題意可設(shè)的斜率為,
則直線的方程為,③
代入橢圓方程并整理,得,
設(shè),則有
,.④
在方程③中令得,的坐標(biāo)為.
從而,,.
, ⑤
④代入⑤得,
又, .
故存在常數(shù)符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在x=1及x=2處取得極值.
(1)求a、b的值;
(2)若方程有三個(gè)根,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在過(guò)點(diǎn)的直線,與和交點(diǎn)分別是和,使得?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取100件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖):
規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損1元,優(yōu)等品每件盈利3元,特優(yōu)品每件盈利5元.以這100 件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤(rùn);
(2)該企業(yè)為了解年?duì)I銷費(fèi)用(單位:萬(wàn)元)對(duì)年銷售量(單位:萬(wàn)件)的影響,對(duì)近5年年?duì)I銷費(fèi)用和年銷售量數(shù)據(jù)做了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
16.30 | 23.20 | 0.81 | 1.62 |
表中,,,.
根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬(wàn)件)關(guān)于年?duì)I銷費(fèi)用(萬(wàn)元)的回歸方程.
①求關(guān)于的回歸方程;
⑦用所求的回歸方程估計(jì)該企業(yè)應(yīng)投人多少年?duì)I銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益=銷售利潤(rùn)營(yíng)銷費(fèi)用,取)
附:對(duì)于一組數(shù)據(jù),,…,其回歸直線均斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(是正常數(shù))上有兩點(diǎn)、,焦點(diǎn),
甲:;
乙:;
丙:;
。.
以上是“直線經(jīng)過(guò)焦點(diǎn)”的充要條件有幾個(gè)( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球運(yùn)動(dòng)員的投籃命中率為,他想提高自己的投籃水平,制定了一個(gè)夏季訓(xùn)練計(jì)劃為了了解訓(xùn)練效果,執(zhí)行訓(xùn)練前,他統(tǒng)計(jì)了10場(chǎng)比賽的得分,計(jì)算出得分的中位數(shù)為15分,平均得分為15分,得分的方差為執(zhí)行訓(xùn)練后也統(tǒng)計(jì)了10場(chǎng)比賽的得分,成績(jī)莖葉圖如圖所示:
請(qǐng)計(jì)算該籃球運(yùn)動(dòng)員執(zhí)行訓(xùn)練后統(tǒng)計(jì)的10場(chǎng)比賽得分的中位數(shù)、平均得分與方差;
如果僅從執(zhí)行訓(xùn)練前后統(tǒng)計(jì)的各10場(chǎng)比賽得分?jǐn)?shù)據(jù)分析,你認(rèn)為訓(xùn)練計(jì)劃對(duì)該運(yùn)動(dòng)員的投籃水平的提高是否有幫助?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著中國(guó)教育改革的不斷深入,越來(lái)越多的教育問(wèn)題不斷涌現(xiàn).“衡水中學(xué)模式”入駐浙江,可以說(shuō)是應(yīng)試教育與素質(zhì)教育的強(qiáng)烈碰撞.這一事件引起了廣大市民的密切關(guān)注.為了了解廣大市民關(guān)注教育問(wèn)題與性別是否有關(guān),記者在北京,上海,深圳隨機(jī)調(diào)查了100位市民,其中男性55位,女性45位.男性中有45位關(guān)注教育問(wèn)題,其余的不關(guān)注教育問(wèn)題;女性中有30位關(guān)注教育問(wèn)題,其余的不關(guān)注教育問(wèn)題.
(1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表;
關(guān)注教育問(wèn)題 | 不關(guān)注教育問(wèn)題 | 合計(jì) | |||||
女 | 30 | 45 | |||||
男 | 45 | 55 | |||||
合計(jì) | 100 | ||||||
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | |||
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為是否關(guān)注教育與性別有關(guān)系?
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動(dòng)中心,為此,該企業(yè)工會(huì)采用分層抽樣的方法,隨機(jī)抽取了300名職工每周的平均運(yùn)動(dòng)時(shí)間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來(lái)估計(jì)該企業(yè)職工每周的運(yùn)動(dòng)時(shí)間:
平均運(yùn)動(dòng)時(shí)間 | 頻數(shù) | 頻率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合計(jì) | 300 | 1 |
(1)求抽取的女職工的人數(shù);
(2)①根據(jù)頻率分布表,求出m、n、p的值,完成如圖所示的頻率分布直方圖,并估計(jì)該企業(yè)職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h的概率;
男職工 | 女職工 | 總計(jì) | |
平均運(yùn)動(dòng)時(shí)間低于4h | |||
平均運(yùn)動(dòng)時(shí)間不低于4h | |||
總計(jì) |
②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運(yùn)動(dòng)時(shí)間不低于4h,請(qǐng)完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認(rèn)為“該企業(yè)職工毎周的平均運(yùn)動(dòng)時(shí)間不低于4h與性別有關(guān)”.
附:K2=,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的焦距為,點(diǎn)在橢圓上,且的最小值是(為坐標(biāo)原點(diǎn)).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)已知?jiǎng)又本與圓:相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com