已知函數(shù)f(x)=x2+2x+1,若存在實數(shù)t,使得不等式f(x+t)≤x對任意的x∈[1,m](m>1)恒成立,則實數(shù)m的最大值為
 
考點:函數(shù)恒成立問題
專題:函數(shù)的性質及應用,不等式的解法及應用
分析:由當x∈[1,m]時,f(x+t)≤x恒成立,即g(x)=f(x+t)-x≤0恒成立,則需滿足g(1)≤0且g(m)≤0,解出t的范圍,討論m的取值即可得到m的最大值.
解答: 解:設g(x)=f(x+t)-x=x2+(2t+1)x+(1+t)2,
由題意f(x+t)-x≤0對任意的x∈[1,m](m>1)恒成立,
即g(1)≤0且g(m)≤0.
由g(1)≤0,得t∈[-3,-1],
由g(m)≤0,得m2+(2t+1)m+(t+1)2≤0,
則當t=-1時,得到m2-m≤0,解得0≤m≤1;
當t=-3時,得到m2-5m+4≤0,解得1≤m≤4.
綜上得到:m∈[1,4],
∴m的最大值為4.
故答案為:4.
點評:本題考查學生理解函數(shù)恒成立時取條件的能力,體現(xiàn)了數(shù)學轉化思想方法,訓練了靈活運用二次函數(shù)求最值的方法的能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1中,AB=AC,D為BC的中點.
(1)若AA1⊥AD,求證:AD⊥DC1
(2)求證:A1B∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

《中華人民共和國個人所得稅》規(guī)定,公民全月工資、薪金所得不超過3500元的部分不必納稅,超過3500元的部分為全月應納稅所得額,此項稅款按下表分段累計計算:
全月應納稅所得額稅率(%)
不超過1500元的部分3
過1500元至4500元的部分10
超過4500元至9000元的部分20
(1)某人一月份的工資、薪金所得是4500元,那么他應繳納稅款是多少?
(2)某人當月份的工資、薪金所得是x元(3000元≤x≤8000元),應交稅款為y元,寫出y關于x的函數(shù)解析式;
(3)已知某人一月份應交稅款303元,那么他這個的工資、薪金所得是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2-2x+a(a≠0)
(1)當a=-1時,求不等式f(x)<0的解集;
(2)若不等式f(x)≥0對x∈(0,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+4
(1)當a=
1
2
時,求函數(shù)y=f(x),x∈[0,2]的最大值及最小值
(2)若對任意x1,x2∈[0,2],都有|f(x1)-f(x2)|<4恒成立,求a的取值圍
(3)若f(x)對a∈[-
5
2
,0]
中的每一個數(shù)a,都有f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0≤x≤3,則y=x2-4x+3( 。
A、有最小值0,最大值3
B、有最小值-1,最大值0
C、有最小值-1,最大值1
D、有最小值-1,最大值3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于未知數(shù)x的方程3-x+1=a沒有實數(shù)根,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程
x2
2
+
y2
m
=1表示焦點在y軸上的橢圓,命題q:關于x的方程x2+2mx+2m+3=0無實根,若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法一定正確的是( 。
A、若ab>ac,則b>c
B、若a>b,c>d,則ac>bd
C、若a>b,則
1
a
1
b
D、若a>b,則a+c>b+c

查看答案和解析>>

同步練習冊答案