【題目】已知函數(shù)f(x)是奇函數(shù),且滿足f(2﹣x)=f(x)(x∈R),當(dāng)0<x≤1時(shí),f(x)=lnx+2,則函數(shù)y=f(x)在(﹣2,4]上的零點(diǎn)個(gè)數(shù)是( )
A.7
B.8
C.9
D.10
【答案】C
【解析】解:由函數(shù)f(x)是奇函數(shù)且滿足f(2﹣x)=f(x)知,f(x)是周期為4的周期函數(shù), 且關(guān)于直線x=1+2k(k∈R)成軸對稱,關(guān)于點(diǎn)(2k,0)(k∈Z)成中心對稱.
當(dāng)0<x≤1時(shí),令f(x)=lnx+2=0,得 ,由此得y=f(x)在(﹣2,4]上的零點(diǎn)分別為 , ,0, , ,2, , ,4共9個(gè)零點(diǎn).
故選C.
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD為矩形, 為BC的中點(diǎn),連接AE,BD,交點(diǎn)H,PH⊥平面ABCD,M為PD的中點(diǎn).
(1)求證:平面MAE⊥平面PBD;
(2)設(shè)PE=1,求二面角M﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正四棱錐P﹣ABCD中,PA=AB=2,點(diǎn)M,N分別在PA,BD上,且 = .
(1)求異面直線MN與PC所成角的大;
(2)求二面角N﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知右焦點(diǎn)為F2(c,0)的橢圓C: + =1(a>b>0)過點(diǎn)(1, ),且橢圓C關(guān)于直線x=c對稱的圖形過坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)( ,0)作直線l與橢圓C交于E,F(xiàn)兩點(diǎn),線段EF的中點(diǎn)為M,點(diǎn)A是橢圓C的右頂點(diǎn),求直線MA的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為創(chuàng)建全國文明城市,某區(qū)向各事業(yè)行政單位征集“文明過馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下頻率分布直方圖.
(Ⅰ)求圖中x的值,并根據(jù)頻率分布直方圖統(tǒng)計(jì)這600名志愿者中年齡在[30.40)的人數(shù);
(Ⅱ)在抽取的100名志愿者中按年齡分層抽取10名參加區(qū)電視臺(tái)“文明伴你行”節(jié)目錄制,再從這10名志愿者中隨機(jī)選取3名到現(xiàn)場分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,記這3名志愿者中年齡不低于35歲的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確是 , (寫出所有正確命題的序號(hào))
①若奇函數(shù)f(x)的周期為4,則函數(shù)f(x)的圖象關(guān)于(2,0)對稱;
②若a∈(0,1),則a1+a<a ;
③函數(shù)f(x)=ln 是奇函數(shù);
④存在唯一的實(shí)數(shù)a使f(x)=lg(ax+ )為奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在y軸正半軸上,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),線段AB的長是8,AB的中點(diǎn)到x軸的距離是3.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線m在y軸上的截距為6,且與拋物線交于P,Q兩點(diǎn),連結(jié)QF并延長交拋物線的準(zhǔn)線于點(diǎn)R,當(dāng)直線PR恰與拋物線相切時(shí),求直線m的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)的表達(dá)式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項(xiàng)公式為an=f( )(n∈N),則此數(shù)列前2017項(xiàng)的和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com