8.已知p:$\frac{1}{x-3}$≥1,q:|x-a|<1,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,4]B.(3,4]C.[3,4]D.(3,4)

分析 求出p,q的等價(jià)條件,根據(jù)充分條件和必要條件的定義即可得到結(jié)論.

解答 解:由$\frac{1}{x-3}$≥1,得$\left\{\begin{array}{l}{x-4≤0}\\{x-3>0}\end{array}\right.$,即3<x≤4,
由|x-a|<1得a-1<x<a+1,
若p是q的充分不必要條件,
則$\left\{\begin{array}{l}{a-1≤3}\\{a+1>4}\end{array}\right.$,即3<a≤4,
故選:B.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(tanx)=cos(2x+$\frac{π}{3}$)-1,則f($\sqrt{3}$)=( 。
A.0B.$-\sqrt{3}$C.$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若實(shí)數(shù)x,y滿(mǎn)足不等式組$\left\{{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y≥0}\end{array}}\right.$,目標(biāo)函數(shù)t=x-2y的最大值為( 。
A.-4B.4C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,a1=t,an+1=2Sn+1,n∈N*
(Ⅰ)當(dāng)實(shí)數(shù)t為何值時(shí),數(shù)列{an}是等比數(shù)列?
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)bn=log3an+1:Tn是數(shù)列 {$\frac{1}{_{n}•_{n+1}}$} 前n項(xiàng)和,求T2011的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知lga+lgb=0,則滿(mǎn)足不等式$\frac{a}{{a}^{2}+1}$+$\frac{^{2}+1}$≤λ的實(shí)數(shù)λ的取值范圍是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=lnx-2x的單調(diào)遞增區(qū)間是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知sinα是方程5x2-7x-6=0的根,求$\frac{sin(-α-\frac{3}{2}π)•sin(π+α)•ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求下列函數(shù)的定義域:
(1)y=3${\;}^{\sqrt{2x-1}}$;(2)y=0.7${\;}^{\frac{1}{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖所示,某射手射擊小球,共打9槍?zhuān)繕尪紦糁幸粋(gè)小球.球共有3串,他每次射擊必須打某一串最下面的一個(gè)小球.其中,第5槍打中A,第6槍打中B的不同射擊方法一共有12種.

查看答案和解析>>

同步練習(xí)冊(cè)答案