【題目】如圖,在直角梯形中, , ,直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面 為線段的中點, 為線段上的動點.

)求證:

)當點滿足時,求證:直線平面

)當點是線段中點時,求直線和平面所成角的正弦值.

【答案】(1)見解析;(2)見解析;(3)直線和平面所成角的正弦值為.

【解析】試題分析:(1)建立空間坐標系求兩直線的方向向量,根據(jù)點積為0可證的結(jié)論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.

解析:

由已知可得, , , 兩兩垂直,以為原點,

, 所在直線為軸, 軸, 軸建立如圖空間直角坐標系,

因為,

所以, , , ,

)證明: , ,

, ,

,

,

平面

又∵平面,

)設(shè)點坐標為,則,

,∴ , ,

解得: , , ,即

設(shè)平面的一個法向量,

, ,

,即,

,則, ,得

,

∴直線平面

)當點是線段中點時, ,

設(shè)的一個法向量為

,

,解

,則, ,得

設(shè)與平面所成角為,則

故直線和平面所成角的正弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) 滿足,.

(1) 求解析式;

(2)當時,,求的值域;

(3)若方程沒有實數(shù)根,求實數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中, 平面,底面是菱形, , 的交點, 為棱上一點,

(1)證明:平面⊥平面

(2)若三棱錐的體積為,

求證: ∥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的兩個焦點為F1、F2 , 且橢圓E過點(0, ),( ,﹣ ),點A是橢圓上位于第一象限的一點,且△AF1F2的面積S =
(1)求點A的坐標;
(2)過點B(3,0)的直線l與橢圓E相交于點P、Q,直線AP、AQ分別與x軸相交于點M、N,點C( ,0),證明:|CM||CN|為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面四邊形ABCD是菱形, 是邊長為2的等邊三角形, , .

求證: 底面ABCD;

求直線CP與平面BDF所成角的大。

在線段PB上是否存在一點M,使得平面BDF?如果存在,求的值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,設(shè)傾斜角為α的直線L: (T為參數(shù))與曲線C: (φ為參數(shù))相交于不同的兩點A,B.
(1)若α= ,若以坐標原點為極點,x軸的正半軸為極軸,求直線AB的極坐標方程;
(2)若直線的斜率為 ,點P(2, ),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=

(1)寫出該函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)=-m恰有3個不同零點,求實數(shù)m的取值范圍;

(3)若n2-2bn+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面, , , , 分別為 的中點.

1求證:平面平面;

2求證:在棱上存在一點,使得平面平面;

3求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】調(diào)查表明,市民對城市的居住滿意度與該城市環(huán)境質(zhì)量、城市建設(shè)、物價與收入的滿意度有極強的相關(guān)性,現(xiàn)將這三項的滿意度指標分別記為x、y、z,并對它們進行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標ω=x+y+z的值評定居民對城市的居住滿意度等級:若ω≥4,則居住滿意度為一級;若2≤ω≤3,則居住滿意度為二級;若0≤ω≤1,則居住滿意度為三級,為了解某城市居民對該城市的居住滿意度,研究人員從此城市居民中隨機抽取10人進行調(diào)查,得到如下結(jié)果:

人員編號

1

2

3

4

5

(x,y,z)

(1,1,2)

(2,1,1)

(2,2,2)

(0,1,1)

(1,2,1)

人員編號

6

7

8

9

10

(x,y,z)

(1,2,2)

(1,1,1)

(1,2,2)

(1,0,0)

(1,1,1)


(1)在這10名被調(diào)查者中任取兩人,求這兩人的居住滿意度指標z相同的概率;
(2)從居住滿意度為一級的被調(diào)查者中隨機抽取一人,其綜合指標為m,從居住滿意度不是一級的被調(diào)查者中任取一人,其綜合指標為n,記隨機變量ξ=m﹣n,求隨機變量ξ的分布列及其數(shù)學期望.

查看答案和解析>>

同步練習冊答案