【題目】已知曲線M上的動點到定點距離是它到定直線距離的一半.
(1)求曲線M的方程;
(2)設過點且傾斜角為的直線與曲線M相交與A、B兩點,在定直線l上是否存在點C,使得,若存在,求出點C的坐標,若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知,,是直線上的個不同的點(,、,均為非零常數),其中數列為等差數列.
(1)求證:數列是等差數列;
(2)若點是直線上一點,且,求證:;
(3)設,且當時,恒有(和都是不大于的正整數,且)試探索:若為直角坐標原點,在直線上是否存在這樣的點,使得成立?請說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①函數是奇函數;
②將函數的圖像向左平移個單位長度,得到函數的圖像;
③若是第一象限角且,則;
④是函數的圖像的一條對稱軸;
⑤函數的圖像關于點中心對稱。
其中,正確的命題序號是______________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一 廠家在一批產品出廠前要對其進行質量檢驗,檢驗方案是: 先從這批產品中任取3件進行檢驗,這3件產品中優(yōu)質品的件數記為.如果,再從這批產品中任取3件進行檢驗,若都為優(yōu)質品,則這批產品通過檢驗;如果,再從這批產品中任取4件進行檢驗,若都為優(yōu)質品,則這批產品通過檢驗;其他情況下,這批產品都不能通過檢驗.
假設這批產品的優(yōu)質品率為50%,即取出的產品是優(yōu)質品的概率都為,且各件產品是否為優(yōu)質品相互獨立.
(1) 求這批產品通過檢驗的概率;
(2) 已知每件產品檢驗費用為100元,凡抽取的每件產品都需要檢驗,對這批產品作質量檢驗所需的費用記為(單位: 元),求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設計成半徑為1km的扇形,中心角().為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點,分別在邊和上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;
(2)試問:當為多少時,年總收入最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.
(1)求橢圓的方程;
(2)若過左焦點斜率為的直線與橢圓交于點 為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,有下列結論:
①的定義域為(-1, 1); ②的值域為(, );
③的圖象關于原點成中心對稱; ④在其定義域上是減函數;
⑤對的定義城中任意都有.
其中正確的結論序號為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com