7.命題“若x>1,y>1,則xy>1”的否命題是若x≤1或y≤1,則xy≤1.

分析 根據(jù)原命題與它的否命題之間的關(guān)系,即可寫出答案.

解答 解:根據(jù)原命題與它的否命題的關(guān)系知,
命題“若x>1,y>1,則xy>1”的否命題是:
“若x≤1或y≤1,則xy≤1”.
故答案為:若x≤1或y≤1,則xy≤1.

點(diǎn)評(píng) 本題考查了原命題與它的否命題之間的關(guān)系與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.以AB為直徑的半圓周上有一動(dòng)點(diǎn)P,連接AP、BP.延長AP至C,使PC=BP,當(dāng)P在從B點(diǎn)向A運(yùn)動(dòng),求C所走過的路程?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.從一副去掉大小怪的52張撲克牌中:
(1)選出1張方塊,有13種不同選法.
(2)選出2張花色不同的撲克牌,但不能選紅心,507種不同選法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知各項(xiàng)都為正數(shù)的等比數(shù)列{an}滿足5a1+4a2=a3,且a1a2=a3
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log5an,且Sn為數(shù)列{bn}的前n項(xiàng)和,求數(shù)列的{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知?jiǎng)狱c(diǎn)M在運(yùn)動(dòng)過程中,總滿足|MF1|+|MF2|=2$\sqrt{2}$,其中F1(-1,0),F(xiàn)2(1,0).
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)斜率存在且過點(diǎn)A(0,1)的直線l與軌跡E交于A,B兩點(diǎn),軌跡E上存在一點(diǎn)P滿足$\sqrt{2}$$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a3=9a1,則$\frac{S_5}{S_3}$=(  )
A.3B.5C.$\frac{18}{5}$D.$\frac{9}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a為實(shí)數(shù),f(x)=x3-ax2-4x+4a.
(1)若f'(-1)=0,求a的值及f(x)在[-2,2]上的最值;
(2)若f(x)在(-∞,-2)和[2,+∞)上都是遞增的,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知F是雙曲線C:x2-$\frac{y^2}{8}$=1的左焦點(diǎn),P是C右支上一點(diǎn),A(0,6$\sqrt{6}$),當(dāng)△APF周長最小時(shí),該三角形的面積為(  )
A.$12\sqrt{6}$B.$\frac{{18\sqrt{2}}}{5}$C.$2\sqrt{2}$D.$\frac{{18\sqrt{6}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.$\frac{\sqrt{1-2sin100°cos280°}}{cos370°-\sqrt{1-co{s}^{2}170°}}$的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案