7.已知集合A={1,2,3},B={y|y=2x-1,x∈A},則A∩B=( 。
A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}

分析 根據(jù)題意,將集合B用列舉法表示出來,可得B={1,3,5},由交集的定義計算可得答案.

解答 解:根據(jù)題意,集合A={1,2,3},而B={y|y=2x-1,x∈A},
則B={1,3,5},
則A∩B={1,3},
故選:A.

點評 本題考查集合的運算,注意集合B的表示方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知點(3,9)在函數(shù)f(x)=1+ax的圖象上,則f(x)的反函數(shù)f-1(x)=log2(x-1)(x>1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.直線2x-y+m=0與x軸交于點A,與y軸交于點B,且△OAB的面積是4.
(1)求m的值;
(2)求點A和點B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=lg(-3x2+7x+10)的定義域為(-1,$\frac{10}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=2sinxcosx-2$\sqrt{3}$cos2x+$\sqrt{3}$.
(Ⅰ)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)若點P1(x1,y1),P2(x2,y2),…Pn(xn,yn)(n∈N*)都在y=f2(x)的圖象上,且滿足x1=$\frac{π}{6}$,xn+1=xn+$\frac{π}{4}$,求y1+y2+…+y2011的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知△ABC是邊長為1的等邊三角形,點D、E分別是邊AB、BC的中點,連接DE并延長到點F,使得DE=2EF,則$\overrightarrow{AF}$•$\overrightarrow{BC}$的值為(  )
A.-$\frac{5}{8}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{11}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=$\sqrt{6}$,∠BAD=60°,G為BC的中點.
(1)求證:FG∥平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知f(x)=sin[$\frac{π}{3}$(x+1)]-$\sqrt{3}$cos[$\frac{π}{3}$(x+1)],則f(1)+f(2)+f(3)+f(4)+…+f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知F1、F2為雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左、右焦點,M為雙曲線上一點,且$\overline{M{F}_{1}}$•$\overline{M{F}_{2}}$=0,則點M到x軸的距離為(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習冊答案