【題目】過拋物線的焦點(diǎn)作直線交拋物線于,兩點(diǎn),若,則的值為( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】

根據(jù)過拋物線焦點(diǎn)的弦長公式,利用題目所給已知條件,求得弦長.

根據(jù)過拋物線焦點(diǎn)的弦長公式有.故選B.

【點(diǎn)睛】

本小題主要考查過拋物線焦點(diǎn)的弦長公式,即.要注意只有過拋物線焦點(diǎn)的弦長才可以使用.屬于基礎(chǔ)題.

型】單選題
結(jié)束】
10

【題目】已知橢圓: 的右頂點(diǎn)、上頂點(diǎn)分別為,坐標(biāo)原點(diǎn)到直線的距離為,且,則橢圓的方程為( )

A. B. C. D.

【答案】D

【解析】

寫出直線的方程,利用原點(diǎn)到直線的距離,以及列方程組,解方程組求得的值,進(jìn)而求得橢圓的方程.

橢圓右頂點(diǎn)坐標(biāo)為,上頂點(diǎn)坐標(biāo)為,故直線的方程為,即,依題意原點(diǎn)到直線的距離為,且,由此解得,故橢圓的方程為,故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCDEFGH構(gòu)成的面積為200平方米的十字型地域.現(xiàn)計(jì)劃在正方形MNPQ上建花壇,造價(jià)為4200/平方米,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210/平方米,再在四個(gè)空角上鋪草坪,造價(jià)為80/平方米.

1)設(shè)總造價(jià)為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關(guān)于x的函數(shù)關(guān)系式;

2)計(jì)劃至少要投入多少元,才能建造這個(gè)休閑小區(qū).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)fx=a-x|x|,常數(shù)aR,且關(guān)于x的不等式mx2+mf[fx]對所有的x[-2,2]恒成立,則實(shí)數(shù)m的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求a的值,并證明R上的增函數(shù);

2)若關(guān)于t的不等式f(t22t)f(2t2k)0的解集非空,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,且時(shí),數(shù)列滿足,,對任意,都有.

1)求數(shù)列的通項(xiàng)公式;

2)令若對任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓上一動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),則線段中點(diǎn)的軌跡方程為_______

【答案】

【解析】

設(shè)出點(diǎn)的坐標(biāo),由此得到點(diǎn)的坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程,化簡后可得點(diǎn)的軌跡方程.

設(shè),由于中點(diǎn),故,代入橢圓方程得,化簡得.點(diǎn)的軌跡方程為.

【點(diǎn)睛】

本小題主要考查代入法求動(dòng)點(diǎn)的軌跡方程,考查中點(diǎn)坐標(biāo),屬于基礎(chǔ)題.

型】填空
結(jié)束】
15

【題目】設(shè)是雙曲線:的右焦點(diǎn),左支上的點(diǎn),已知,則周長的最小值是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P到定點(diǎn)的距離比它到直線的距離小2,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C

求曲線C的方程;

若直線與曲線C和圓從左至右的交點(diǎn)依次為A,B,C,D的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相切,設(shè)點(diǎn)為圓上一動(dòng)點(diǎn), 軸于,且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線

(1)求曲線的方程;

(2)直線與直線垂直且與曲線交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案