10.一個(gè)底面半徑為2cm的圓柱形容器內(nèi)盛有高度為6cm的水,現(xiàn)將一個(gè)母線長為$\sqrt{13}$cm的圓錐形物體完全浸入水中,容器里水的高度上升到7cm,則該圓錐的高為(  )
A.1cmB.2cmC.3cmD.$\sqrt{3}$cm

分析 根據(jù)水面上升高度求出圓錐的體積,用圓錐的高h(yuǎn)表示出底面半徑,則

解答 解:圓錐的體積V=π×22×1=4π,
設(shè)圓錐的高為h,則圓錐的底面半徑r=$\sqrt{13-{h}^{2}}$,
∴V=$\frac{1}{3}π(13-{h}^{2})h$=4π,
解得h=1或h=3.
當(dāng)h=1時(shí),r=$\sqrt{12}$=2$\sqrt{3}$>2,不符合題意.
故選:C.

點(diǎn)評(píng) 本題考查了圓錐的結(jié)構(gòu)特征和體積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足an+1=2an+4•3n-1,a1=1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在數(shù)列{an}中,a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=3n,則an為(  )
A.an=3nB.an=3${\;}^{\frac{n(n+1)}{2}}$C.an=3${\;}^{\frac{n(n-1)}{2}}$D.an=3${\;}^{\frac{n}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若(x+$\frac{1}{\sqrt{x}}$)n(n∈N*)展開式中各項(xiàng)系數(shù)的和等于64,則展開式中x3的系數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.將單詞“l(fā)imit”字母重新組合,有多少種不同的排列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(拉普拉斯(Laplace)分布)設(shè)隨機(jī)變量X的概率密度為
f(x)=Ae-|x|,-∞<x<+∞
求:
(1)系數(shù)A;
(2)隨機(jī)變量X落在區(qū)間(0,1)內(nèi)的概率;
(3)隨機(jī)變量X的分布函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若|$\overrightarrow{a}$|=3,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,$\overrightarrow{a}$•$\overrightarrow$=3,則|$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}中a1=1,a2=2,an+1=$\frac{1}{{a}_{n}}$+an+2,則a3=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,多面體ABCDEF中,BA,BC,BE兩兩垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1.
(I)若點(diǎn)G在線段AB上,且BG=3GA,求證:CG∥平面ADF;
(II)求多面體ABCDEF的體積.

查看答案和解析>>

同步練習(xí)冊答案