12.各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,a2=10,$\frac{{a}_{n}}{{a}_{n-1}}$=$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$(n=3,4,5,…),求數(shù)列{an}的通項(xiàng)公式.

分析 由$\frac{{a}_{n}}{{a}_{n-1}}$=$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$,得$lg{a}_{n}-lg{a}_{n-1}=\frac{1}{2}(lg{a}_{n-1}-lg{a}_{n-2})$,令bn=lgan+1-lgan,得數(shù)列{bn}是以1為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,求其通項(xiàng)公式再由累積法求數(shù)列{an}的通項(xiàng)公式.

解答 解:由$\frac{{a}_{n}}{{a}_{n-1}}$=$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$,得$lg{a}_{n}-lg{a}_{n-1}=\frac{1}{2}(lg{a}_{n-1}-lg{a}_{n-2})$,
令bn=lgan+1-lgan,則b1=lga2-lga1=lg10-lg1=1,
$_{n-1}=\frac{1}{2}_{n-2}$(n=3,4,5,…),
∴數(shù)列{bn}是以1為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
則$_{n}=lg{a}_{n+1}-lg{a}_{n}=(\frac{1}{2})^{n-1}$(n=1,2,3,…).
∴$\frac{{a}_{n+1}}{{a}_{n}}=1{0}^{(\frac{1}{2})^{n-1}}$.
由累乘法得:$\frac{{a}_{n}}{{a}_{1}}=10×1{0}^{\frac{1}{2}}×1{0}^{\frac{1}{4}}×…×1{0}^{(\frac{1}{2})^{n-1}}$=$1{0}^{2[1-(\frac{1}{2})^{n-1}]}$.
∴an=$1{0}^{2[1-(\frac{1}{2})^{n-1}]}$.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了利用累積法求數(shù)列的通項(xiàng)公式,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0<0,則a的取值范圍為( 。
A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{5\sqrt{2}}{2}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).
(1)求直線l的普通方程;
(2)若P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的最大距離及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(1)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若S2=4,an+1=2Sn+1,n∈N+,則a1=1
(2)設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,若a1=1且3S1,2S2,S3成等差數(shù)列,則an=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx+(x-a)2-$\frac{a}{2}$,a∈R.
(Ⅰ)若函數(shù)f(x)在[$\frac{1}{2}$,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.?dāng)?shù)列{an}滿足a1=1,an+1=an+2(n∈N*),則a10=19,S10=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=ln(1+x)-ln(1-x)
(1)求函數(shù)f(x)的定義域
(2)證明函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知對(duì)數(shù)函數(shù) f ( x)的圖象過點(diǎn)(10,1),對(duì)數(shù)函數(shù)g( x)的圖象過點(diǎn)($\frac{1}{10}$,1).
(1)求 f(x),g (x)的解析式;
(2)求當(dāng) x 為何值時(shí):①f ( x )>g ( x),②f ( x )=g ( x),③f ( x )<g ( x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知變量x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{4x-y-4≤0}\\{x≥a}\end{array}\right.$,點(diǎn)(x,y)對(duì)應(yīng)的區(qū)域的面積為$\frac{25}{24}$,則x2+y2的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{9}{4}$]B.[$\frac{1}{4}$,$\frac{9}{4}$]C.[$\frac{1}{4}$,$\frac{32}{9}$]D.[$\frac{1}{4}$,$\frac{17}{4}$]

查看答案和解析>>

同步練習(xí)冊答案