【題目】某學校在一次第二課堂活動中,特意設置了過關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒過者沒獎勵,過關(guān)者獎勵件小獎品(獎品都一樣).下圖是小明在10次過關(guān)游戲中過關(guān)數(shù)的條形圖,以此頻率估計概率.
(Ⅰ)求小明在這十次游戲中所得獎品數(shù)的均值;
(Ⅱ)規(guī)定過三關(guān)者才能玩另一個高級別的游戲,估計小明一次游戲后能玩另一個游戲的概率;
(Ⅲ)已知小明在某四次游戲中所過關(guān)數(shù)為{2,2,3,4},小聰在某四次游戲中所過關(guān)數(shù)為{3,3,4,5},現(xiàn)從中各選一次游戲,求小明和小聰所得獎品總數(shù)超過10的概率.
【答案】 (Ⅰ) (Ⅱ) ; (Ⅲ)
【解析】試題分析:(I)用列表法將過關(guān)數(shù)和獎品數(shù)計算出來,利用總的獎品數(shù)除以總次數(shù),得到獎品數(shù)的均值.(II)過三關(guān)的次數(shù)為次,故概率為.(III)用列表法將兩個人過關(guān)次數(shù)和對應的獎品數(shù)和列出,通過表格可求得相應的概率.
試題解析:
(Ⅰ)小明的過關(guān)數(shù)與獎品數(shù)如下表:
過關(guān)數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
獎品數(shù) | 0 | 1 | 2 | 4 | 8 | 16 |
小明在這十次游戲中所得獎品數(shù)的均值為
;
(Ⅱ)小明一次游戲后能玩另一個游戲的概率約為;
(Ⅲ)小明在四次游戲中所得獎品數(shù)為{2,2,4,8},
小聰在四次游戲中所得獎品數(shù)為{4,4,8,16},
現(xiàn)從中各選一次游戲,獎品總數(shù)如下表:
2 | 2 | 4 | 8 | |
4 | 6 | 6 | 8 | 12 |
4 | 6 | 6 | 8 | 12 |
8 | 10 | 10 | 12 | 16 |
16 | 18 | 18 | 20 | 24 |
共16個基本事件,總數(shù)超過10的有8個基本事件,故所求的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線(為參數(shù), ),其中,在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.
(Ⅰ)求與交點的直角坐標系;
(Ⅱ)若與相交于點,與相交于點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點是, ,且橢圓經(jīng)過點.
(1)求橢圓的標準方程;
(2)若過橢圓的左焦點且斜率為1的直線與橢圓交于兩點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“足寒傷心,民寒傷國”,精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對石山區(qū)鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關(guān)系為(其中推廣促銷費不能超過3萬元).已知加工此批農(nóng)產(chǎn)品還要投入成本萬元(不包含推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.
(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤銷售額成本推廣促銷費)
(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有兩個相異零點, ,求證: .(其中e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設關(guān)于的一元二次方程.
(1)若從, , , 四個數(shù)中任取的一個數(shù), 是從, , 三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間上任取的一個數(shù), 是從區(qū)間上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校在一次第二課堂活動中,特意設置了過關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒過者沒獎勵,過 關(guān)者獎勵件小獎品(獎品都一樣).下圖是小明在10次過關(guān)游戲中過關(guān)數(shù)的條形圖,以此頻率估計概率.
(Ⅰ)估計小明在1次游戲中所得獎品數(shù)的期望值;
(Ⅱ)估計小明在3 次游戲中至少過兩關(guān)的平均次數(shù);
(Ⅲ)估計小明在3 次游戲中所得獎品超過30件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定下列函數(shù):①f(x)= ②f(x)=﹣|x|③f(x)=﹣2x﹣1 ④f(x)=(x﹣1)2 , 滿足“對任意x1 , x2∈(0,+∞),當x1<x2時,都有f(x1)>f(x2)”的條件是( )
A.①②③
B.②③④
C.①②④
D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com