【題目】下列四個命題:

函數(shù)的最大值為1;

,的否定是;

為銳角三角形,則有;

函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件.

其中錯誤的個數(shù)是( )

A.1B.2C.3D.4

【答案】A

【解析】

由正弦的二倍角公式和正弦函數(shù)的值域判斷;寫出全稱命題的否定判斷;由銳角三角形的定義和正弦函數(shù)的單調(diào)性,結(jié)合誘導(dǎo)公式可判斷;由二次函數(shù)的圖象和性質(zhì),結(jié)合充分必要條件的定義可判斷.

解:,得的最大值為,故錯誤;

,的否定是,故正確;

為銳角三角形,,則,

上是增函數(shù),,同理可得,,故正確;

,函數(shù)的零點是,0,結(jié)合二次函數(shù)的對稱軸,

可得函數(shù)在區(qū)間內(nèi)單調(diào)遞增;

若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,結(jié)合二次函數(shù)的對稱軸,可得,

,

函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件,故正確.

其中錯誤的個數(shù)是1.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列,公差為,前項和為.

1)設(shè),,求的最大值.

2)設(shè),,數(shù)列的前項和為,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù)滿足任意都有,,,,,的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機構(gòu)組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,CD四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxDyAyByCyD都是1,23,4四個數(shù)字的一種排列.定義隨機變量X=(xAyA2+xByB2+xCyC2+xDyD2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.

1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.

)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;

)求X的分布列(簡要說明方法,不用寫出詳細計算過程);

2)若有一組小孩和家長進行來三輪游戲,三輪的結(jié)果都滿足X4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是圓的直徑,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,在同一個球面上

B.當(dāng)時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年國慶黃金周影市火爆依舊,《我和我的祖國》、《中國機長》、《攀登者》票房不斷刷新,為了解我校高三2300名學(xué)生的觀影情況,隨機調(diào)查了100名在校學(xué)生,其中看過《我和我的祖國》或《中國機長》的學(xué)生共有80位,看過《中國機長》的學(xué)生共有60位,看過《中國機長》且看過《我和我的祖國》的學(xué)生共有50位,則該校高三年級看過《我和我的祖國》的學(xué)生人數(shù)的估計值為( )

A.1150B.1380C.1610D.1860

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為,離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市房管局為了了解該市市民月至月期間買二手房情況,首先隨機抽樣其中名購房者,并對其購房面積(單位:平方米,)進行了一次調(diào)查統(tǒng)計,制成了如圖所示的頻率分布直方圖,接著調(diào)查了該市月至月期間當(dāng)月在售二手房均價(單位:萬元/平方米),制成了如圖所示的散點圖(圖中月份代碼分別對應(yīng)月至月).

1)試估計該市市民的購房面積的中位數(shù);

2)從該市月至月期間所有購買二手房中的市民中任取人,用頻率估計概率,記這人購房面積不低于平方米的人數(shù)為,求的數(shù)學(xué)期望;

3)根據(jù)散點圖選擇兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為,并得到一些統(tǒng)計量的值如下表所示:

請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預(yù)測出月份的二手房購房均價(精確到

(參考數(shù)據(jù)),,,,.

(參考公式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,.

(1) 求證:;

(2) 求直線與平面所成角的正弦值;

(3) 線段上是否存在點,使平面若存在,求出;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案