8.某化工廠每一天中污水污染指數(shù)f(x)與時(shí)刻x(時(shí))的函數(shù)關(guān)系為f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a為污水治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若$a=\frac{1}{2}$,求一天中哪個(gè)時(shí)刻污水污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當(dāng)天的污水污染指數(shù),要使該廠每天的污水污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應(yīng)控制在什么范圍內(nèi)?

分析 (1)通過$a=\frac{1}{2}$,化簡$f(x)=|{{{log}_{25}}({x+1})-\frac{1}{2}}|+2≥2$,求出x=4.得到一天中早上4點(diǎn)該廠的污水污染指數(shù)最低.
(2)設(shè)t=log25(x+1),設(shè)g(t)=|t-a|+2a+1,t∈[0,1],得到$g(t)=\left\{\begin{array}{l}-t+3a+1,0≤t≤a\\ t+a+1,a<t≤1\end{array}\right.$,利用分段函數(shù),函數(shù)的單調(diào)性最值求解即可.

解答 解:(1)因?yàn)?a=\frac{1}{2}$,則$f(x)=|{{{log}_{25}}({x+1})-\frac{1}{2}}|+2≥2$.…(2分)
當(dāng)f(x)=2時(shí),${log_{25}}({x+1})-\frac{1}{2}=0$,得$x+1={25^{\frac{1}{2}}}=5$,
即x=4.所以一天中早上4點(diǎn)該廠的污水污染指數(shù)最低.…(4分)
(2)設(shè)t=log25(x+1),則當(dāng)0≤x≤24時(shí),0≤t≤1.
設(shè)g(t)=|t-a|+2a+1,t∈[0,1],
則$g(t)=\left\{\begin{array}{l}-t+3a+1,0≤t≤a\\ t+a+1,a<t≤1\end{array}\right.$,…(7分)
顯然g(t)在[0,a]上是減函數(shù),在[a,1]上是增函數(shù),
則f(x)max=max{g(0),g(1)},…(9分)
因?yàn)間(0)=3a+1,g(1)=a+2,
則有 $\left\{{\begin{array}{l}{g(0)=3a+1≤3}\\{g(1)=a+2≤3}\end{array}}\right.$,解得$a≤\frac{2}{3}$,…(11分)
又a∈(0,1),故調(diào)節(jié)參數(shù)a應(yīng)控制在$(0,\frac{2}{3}]$內(nèi).…(12分)

點(diǎn)評(píng) 本題考查函數(shù)的實(shí)際應(yīng)用,分段函數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性以及函數(shù)的最值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)$f(x)=\sqrt{-{x^2}+(a+2)x-a-1}(a>0)$的定義域?yàn)榧螦,函數(shù)g(x)=2x-1(x≤2)的值域?yàn)榧螧.
(1)當(dāng)a=1時(shí),求集合A,B;
(2)若集合A,B滿足A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,∠C=45°,O是△ABC的外心,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}({m,n∈R})$,則m+n的取值范圍為[-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.母線長為1的圓錐的側(cè)面展開圖的圓心角等于120°,則該圓錐的體積為( 。
A.$\frac{{2\sqrt{2}}}{81}π$B.$\frac{{4\sqrt{5}}}{81}π$C.$\frac{8}{81}π$D.$\frac{10}{81}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點(diǎn)(0,2)關(guān)于直線l的對(duì)稱點(diǎn)為(4,0),點(diǎn)(6,3)關(guān)于直線l的對(duì)稱點(diǎn)為(m,n),則m+n=$\frac{33}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某校為了解高二的1553名同學(xué)對(duì)教師的教學(xué)意見,現(xiàn)決定用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,先在總體中隨機(jī)剔除n個(gè)個(gè)體,然后把剩下的個(gè)體按0001,0002,0003…編號(hào)并分成m個(gè)組,則n和m應(yīng)分別是(  )
A.53,50B.53,30C.3,50D.3,31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.正方體ABCD-A1B1C1D1中,E為AB中點(diǎn),F(xiàn)為CD1中點(diǎn).
(1)求證:EF∥平面ADD1A1;
(2)AB=2,求三棱錐D1-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(diǎn)(1,f(1))處切線的斜率為1,則實(shí)數(shù)a的值為(  )
A.-$\frac{3}{4}$B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.等比數(shù)列{an}的公比為-$\sqrt{2}$,則ln(a20172-ln(a20162=ln2.

查看答案和解析>>

同步練習(xí)冊(cè)答案