橢圓上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的左右焦點(diǎn),若∠PF1F2=60°,∠PF2F1=30°,則此橢圓的離心率為( 。
分析:利用含30°直角三角形的邊角關(guān)系、橢圓的定義、離心率計(jì)算公式即可得出.
解答:解:∵∠PF1F2=60°,∠PF2F1=30°,∴F1PF2=90°
在Rt△PF1F2中,|PF2|=
1
2
|F1F2|
=c,|PF1|=
3
c

∵|PF1|+|PF2|=2a,
∴c+
3
c=2a,
e=
c
a
=
2
3
+1
=
3
-1

故選B.
點(diǎn)評:本題考查了含30°直角三角形的邊角關(guān)系、橢圓的定義、離心率計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,P是橢圓上一點(diǎn),且∠F1PF2=60°,設(shè)
|PF1|
|PF2|

(1)求橢圓C的離心率e和λ的函數(shù)關(guān)系式e=f(λ)
(2)若橢圓C的離心率e最小,且橢圓C上的動(dòng)點(diǎn)M到定點(diǎn)N(0,
1
2
)
的最遠(yuǎn)距離為
5
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點(diǎn)分別為F1,F(xiàn)2,其中F2也是拋物線C2y2=4x的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且MF2=
5
3

(1)求橢圓C1的方程;
(2)已知點(diǎn)A(1,m)(m>0)是橢圓C1上一點(diǎn),E,F(xiàn)是橢圓C1上的兩個(gè)動(dòng)點(diǎn),若直線AE的斜率與AF的斜率互為相反數(shù),探求直線EF的斜率是否為定值?如果是,求出定值;反之,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•崇明縣二模)設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)與雙曲線
x2
3
-
y2
1
=1
有相同的焦點(diǎn)F1(-c,0),F(xiàn)2(c,0)(c>0),P為橢圓上一點(diǎn),△PF1F2的最大面積等于2
2
.過點(diǎn)N(-3,0)且傾角為30°的直線l交橢圓于A、
B兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:點(diǎn)F1(-c,0)在以線段AB為直徑的圓上;
(3)設(shè)E、F是直線l上的不同兩點(diǎn),以線段EF為直徑的圓過點(diǎn)F1(-c,0),求|EF|的最小值并求出對應(yīng)的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州市荔灣區(qū)廣雅中學(xué)高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為F1、F2,P是橢圓上一點(diǎn),且∠F1PF2=60°,設(shè)
(1)求橢圓C的離心率e和λ的函數(shù)關(guān)系式e=f(λ)
(2)若橢圓C的離心率e最小,且橢圓C上的動(dòng)點(diǎn)M到定點(diǎn)的最遠(yuǎn)距離為,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市崇明縣高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)橢圓(a>b>0)與雙曲線有相同的焦點(diǎn)F1(-c,0),F(xiàn)2(c,0)(c>0),P為橢圓上一點(diǎn),△PF1F2的最大面積等于.過點(diǎn)N(-3,0)且傾角為30°的直線l交橢圓于A、
B兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:點(diǎn)F1(-c,0)在以線段AB為直徑的圓上;
(3)設(shè)E、F是直線l上的不同兩點(diǎn),以線段EF為直徑的圓過點(diǎn)F1(-c,0),求|EF|的最小值并求出對應(yīng)的圓方程.

查看答案和解析>>

同步練習(xí)冊答案