【題目】設(shè)函數(shù)f(x)=lnx﹣ax2+ax,a為正實(shí)數(shù).
(1)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求證:f( )≤0;
(3)若函數(shù)f(x)有且只有1個零點(diǎn),求a的值.
【答案】
(1)解:當(dāng)a=2時,f(x)=lnx﹣2x2+2x,f′(x)= ﹣2x+2,
∴f′(1)=1,
∵f(1)=0,
∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=x
(2)證明:f( )=﹣lna﹣ +1(a>0),
令g(x)=﹣lnx﹣ +1(x>0),則g′(x)= ,
∴0<x<1時,g′(x)>0,函數(shù)單調(diào)遞增;x>1時,g′(x)<0,函數(shù)單調(diào)遞減,
∴x=1時,函數(shù)取得極大值,即最大值,
∴g(x)≤g(1)=0,
∴f( )≤0;
(3)解:由題意可知,函數(shù)f(x)有且只有1個零點(diǎn)為(1,0),
則f′(1)=0,即1﹣2a+a=0
∴a=1
【解析】(1)求導(dǎo)數(shù),確定切線的斜率,切點(diǎn)坐標(biāo),可得切線方程;(2)構(gòu)造函數(shù),確定函數(shù)的單調(diào)性與最值,即可證明結(jié)論;(3)由題意可知,函數(shù)f(x)有且只有1個零點(diǎn)為(1,0),則f′(1)=0,即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,C為銳角且asinA=bsinBsinC, .
(1)求C的大小;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx+cosωx的最小正周期為π,x∈R,ω>0是常數(shù).
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在(1,+∞)上是增函數(shù),且a>0.
(Ⅰ)求a的取值范圍;
(Ⅱ)求函數(shù)g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線x2﹣ =1的左右焦點(diǎn)分別為F1、F2 , 過點(diǎn)F2的直線交雙曲線右支于A,B兩點(diǎn),若△ABF1是以A為直角頂點(diǎn)的等腰三角形,則△AF1F2的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果將函數(shù)f(x)=sin(3x+φ)(﹣π<φ<0)的圖象向左平移 個單位所得到的圖象關(guān)于原點(diǎn)對稱,那么φ=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若 ,則b2+c2的取值范圍是( )
A.(5,6]
B.(3,5)
C.(3,6]
D.[5,6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
(1)當(dāng)a=2時,解不等式f(x)≥4.
(2)若不等式f(x)≥2a恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求過兩點(diǎn)A(1,4)、B(3,2),且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點(diǎn)M1(2,3),M2(2,4)與圓的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com