A. | {a|-2<a≤2} | B. | {a|-2<a<2} | C. | {a|a<-2} | D. | {a|a<-2或a>2} |
分析 分類討論:當a=2時;當a≠0時,由題意可得$\left\{\begin{array}{l}{2-a>0}\\{△<0}\end{array}\right.$,解出即可.
解答 解:①當a=2時,原不等式化為4>0,因此a=2適合;
②當a≠0時,由題意可得$\left\{\begin{array}{l}{2-a>0}\\{△=4(a-2)^{2}-16(2-a)<0}\end{array}\right.$,
化為$\left\{\begin{array}{l}{a<2}\\{(a-2)(a+2)<0}\end{array}\right.$,解得-2<a<2.
綜上可知:a的取值范圍為{a|-2<a≤2}.
故選:A.
點評 本題考查了函數(shù)恒成立,二次函數(shù)的性質,一元二次不等式的解法、分類討論等基礎知識與基本技能方法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{7}{2}$ | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±2或-1 | B. | -2或-1 | C. | 2或-1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com