【題目】已知等比數(shù)列的首項,數(shù)列前項和記為,前項積記為.
(1) 若,求等比數(shù)列的公比;
(2) 在(1)的條件下,判斷與的大小;并求為何值時,取得最大值;
(3) 在(1)的條件下,證明:若數(shù)列中的任意相鄰三項按從小到大排列,則總可以使其成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為,則數(shù)列為等比數(shù)列.
【答案】(1);(2),當時,最大;(3)證明見解析.
【解析】
(1),求和通項公式;
(2)根據(jù)定義可知,然后根據(jù)公式求,即時的最大值,再根據(jù),判斷的最大值;
(3)由(1)可知當為奇數(shù)時,中的任意相鄰三項由小到大排列是,若成等差數(shù)列,可求是否成立,并求公差,當是偶數(shù)時,設(shè)中的任意相鄰三項按從小到大排列為,判斷是否成等差數(shù)列,并求公差,并按定義判斷數(shù)列是否為等比數(shù)列
(1) ,解得,;
(2).又,
當時,;當時,.當時,取得最大值,
又,∴的最大值是和中的較大者,
又,.因此當時,最大.
(3),隨增大而減小,奇數(shù)項均正,偶數(shù)項均負,
①當是奇數(shù)時,設(shè)中的任意相鄰三項按從小到大排列為,
則,,
,因此成等差數(shù)列,
公差;
②當是偶數(shù)時,設(shè)中的任意相鄰三項按從小到大排列為,
則,.
∴,因此成等差數(shù)列,
公差,
綜上可知,中的任意相鄰三項按從小到大排列,總可以使其成等差數(shù)列,
且, ∵,∴數(shù)列為等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)現(xiàn)田忌的馬和其他人的馬相差并不遠,都分為上、中、下三等.于是孫臏給田忌將軍獻策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設(shè)田忌的各等級馬與某公子的各等級馬進行一場比賽,田忌獲勝的概率如下表所示:
比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結(jié)果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
(1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;
(2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線焦點為,為拋物線上在第一象限內(nèi)一點,為原點,面積為.
(1)求拋物線方程;
(2)過點作兩條直線分別交拋物線于異于點的兩點,,且兩直線斜率之和為,
(i)若為常數(shù),求證直線過定點;
(ii)當改變時,求(i)中距離最近的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,底面ABCD為直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.
(1)求證:AB平面SAD;
(2)求平面SCD與平面SAB所成的銳二面角的余弦值;
(3)點E,F分別為線段BC,SB上的一點,若平面AEF//平面SCD,求三棱錐B-AEF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從四所高校中選2所.
(Ⅰ)求甲、乙、丙三名同學都選高校的概率;
(Ⅱ)若已知甲同學特別喜歡高校,他必選校,另在三校中再隨機選1所;而同學乙和丙對四所高校沒有偏愛,因此他們每人在四所高校中隨機選2所.
(ⅰ)求甲同學選高校且乙、丙都未選高校的概率;
(ⅱ)記為甲、乙、丙三名同學中選校的人數(shù),求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形,,,將沿對角線進行翻折,得到三棱錐,則在翻折的過程中,有下列結(jié)論正確的有_____.
①三棱錐的體積的最大值為;
②三棱錐的外接球體積不變;
③三棱錐的體積最大值時,二面角的大小是60°;
④異面直線與所成角的最大值為90°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知圓與直線相切,點A為圓上一動點,軸于點N,且動點滿足,設(shè)動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)P,Q是曲線C上兩動點,線段的中點為T,,的斜率分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若正實數(shù)滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,底面,.點、、分別為棱、、的中點,是線段的中點,,.
(1)求證:平面;
(2)求二面角的正弦值;
(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com