【題目】在直角坐標系中,已知圓與直線相切,點A為圓上一動點,軸于點N,且動點滿足,設動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設P,Q是曲線C上兩動點,線段的中點為T,,的斜率分別為,且,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體的棱長為,點分別為棱的中點,下列結論中,其中正確的個數(shù)是( )
①過三點作正方體的截面,所得截面為正六邊形;
②/平面;
③;
④異面直線與所成角的正切值為;
⑤四面體的體積等于
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蘋果可按果徑(最大橫切面直徑,單位:.)分為五個等級:時為1級,時為2級,時為3級,時為4級,時為5級.不同果徑的蘋果,按照不同外觀指標又分為特級果、一級果、二級果.某果園采摘蘋果10000個,果徑均在內,從中隨機抽取2000個蘋果進行統(tǒng)計分析,得到如圖1所示的頻率分布直方圖,圖2為抽取的樣本中果徑在80以上的蘋果的等級分布統(tǒng)計圖.
(1)假設服從正態(tài)分布,其中的近似值為果徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值代替),,試估計采摘的10000個蘋果中,果徑位于區(qū)間的蘋果個數(shù);
(2)已知該果園今年共收獲果徑在80以上的蘋果,且售價為特級果12元,一級果10元,二級果9元.設該果園售出這蘋果的收入為,以頻率估計概率,求的數(shù)學期望.
附:若隨機變量服從正態(tài)分布,則
,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,,.
(1)求直線與平面所成角的正弦值.
(2)在棱上是否存在點,使得平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù))。曲線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)求曲線,的極坐標方程;
(2)在極坐標系中,射線與曲線交于點,射線與曲線交于點,求的面積(其中為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,準線的方程為.若三角形的三個頂點都在拋物線上,且,則稱該三角形為“向心三角形”.
(1)是否存在“向心三角形”,其中兩個頂點的坐標分別為和?說明理由;
(2)設“向心三角形”的一邊所在直線的斜率為,求直線的方程;
(3)已知三角形是“向心三角形”,證明:點的橫坐標小于.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com