【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù))。曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線,的極坐標(biāo)方程;

(2)在極坐標(biāo)系中,射線與曲線交于點(diǎn),射線與曲線交于點(diǎn),求的面積(其中為坐標(biāo)原點(diǎn)).

【答案】(1) 曲線:,曲線.

(2)1.

【解析】分析:第一問首先將參數(shù)方程消參化為普通方程,之后應(yīng)用極坐標(biāo)與平面直角坐標(biāo)之間的轉(zhuǎn)換關(guān)系,求得結(jié)果,第二問聯(lián)立對應(yīng)曲線的極坐標(biāo)方程,求得對應(yīng)點(diǎn)的極坐標(biāo),結(jié)合極徑和極角的意義,結(jié)合三角形面積公式求得結(jié)果.

詳解:(1)由曲線為參數(shù)),消去參數(shù)得:

化簡極坐標(biāo)方程為:

曲線為參數(shù))消去參數(shù)得:

化簡極坐標(biāo)方程為:

(2)聯(lián)立

聯(lián)立

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級可分為四類:珍品、特級、優(yōu)級和一級(每箱5kg.某采購商打算采購一批橙子銷往省外,并從采購的這批橙子中隨機(jī)抽取100箱,利用橙子的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:

等級

珍品

特級

優(yōu)級

一級

箱數(shù)

40

30

10

20

售價(jià)(元/kg

36

30

24

18

1)試計(jì)算樣本中的100箱不同等級橙子的平均價(jià)格;

2)按照分層抽樣的方法,從這100個(gè)樣本中抽取10箱,試計(jì)算各等級抽到的箱數(shù);

3)若在(2)抽取的特級品和一級品的箱子上均編上號放在一起再從中抽取2箱,求抽取的2箱中兩種等級均有的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c

)若a,bc成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓與直線相切,點(diǎn)A為圓上一動點(diǎn),軸于點(diǎn)N,且動點(diǎn)滿足,設(shè)動點(diǎn)M的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)P,Q是曲線C上兩動點(diǎn),線段的中點(diǎn)為T,的斜率分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有除顏色外形狀大小完全相同的6個(gè)小球,其中有4個(gè)編號為1,2, 3, 4的紅球,2個(gè)編號為A、B的黑球,現(xiàn)從中任取2個(gè)小球.;

(1)求所取2個(gè)小球都是紅球的概率;

(2)求所取的2個(gè)小球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長度,再向下平移1個(gè)單位,得到函數(shù)的圖像.

1)當(dāng)時(shí),求的值域

2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C:(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分

(Ⅰ)求橢圓C的方程;

() 求ABP的面積取最大時(shí)直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,且對任意的正整數(shù),都有,其中常數(shù).設(shè)

1)若,求數(shù)列的通項(xiàng)公式;

2)若,設(shè),證明數(shù)列是等比數(shù)列;

3)若對任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;

(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

同步練習(xí)冊答案