18.把函數(shù)y=sin($\frac{π}{4}$-2x)向右平移$\frac{π}{8}$個單位,然后把橫坐標變?yōu)樵瓉淼?倍,則所得到的函數(shù)的解析式為y=cosx.

分析 直接利用左加右減的平移原則,以及橫坐標伸長變換后,寫出平移伸縮后的函數(shù)解析式.

解答 解:函數(shù)$y=sin(\frac{π}{4}-2x)$向右平移$\frac{π}{8}$個單位,得$y=sin[\frac{π}{4}-2(x-\frac{π}{8})]=cos2x$,
把橫坐標變?yōu)樵瓉淼?倍,得函數(shù)的解析式為y=cosx.
故答案為:y=cosx.

點評 本題主要考查三角函數(shù)的平移,三角函數(shù)的平移原則為左加右減上加下減,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.若α∈(0,π),且sinα+2cosα=2,則tan$\frac{α}{2}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知△ABC中,邊a,b,c的對角分別為A,B,C,且a=$\sqrt{2}$,c=$\sqrt{6}$,C=$\frac{2π}{3}$,則△ABC的面積S=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x-a|+|2x+1|,g(x)=2-|x-1|.
(I)解不等式:|g(x)|<1;
(Ⅱ)若存在x1∈R,x2∈R,使得f(x1)≤g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,四邊形ABCD與BDEF均為菱形,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:AC⊥平面BDEF;
(2)設(shè)AB=BF=a,求四面體A-BCF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某校高三數(shù)學備課組有六位理科老師和兩位文科老師,在三天的霧霾停課期間,安排老師坐班答疑,要求每天都有一位文科老師和兩位理科老師答疑,其中每位老師至少答疑一天,至多答疑兩天,則不同的安排方法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知拋物線y=ax2(a>0)的焦點恰好為雙曲線y2-x2=2的一個焦點,則a的值為( 。
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若復(fù)數(shù)z滿足z=$\frac{1-i}{1+2i}$,則|z|=( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{\sqrt{10}}{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系xOy中,設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{6}$,且過點($\sqrt{2}$,$\sqrt{5}$).
(1)求橢圓C的方程;
(2)設(shè)點P是橢圓C上橫坐標大于2的一點,過點P作圓(x-1)2+y2=1的兩條切線分別與y軸交于點A,B,試確定點P的坐標,使得△PAB的面積最大.

查看答案和解析>>

同步練習冊答案