10.已知拋物線(xiàn)y=ax2(a>0)的焦點(diǎn)恰好為雙曲線(xiàn)y2-x2=2的一個(gè)焦點(diǎn),則a的值為(  )
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

分析 利用拋物線(xiàn)的方程及雙曲線(xiàn)的方程求出拋物線(xiàn)的焦點(diǎn)坐標(biāo)和雙曲線(xiàn)的焦點(diǎn)坐標(biāo),列出方程求出a.

解答 解:拋物線(xiàn)y=ax2(a>0)的焦點(diǎn)為(0,$\frac{1}{4a}$),
雙曲線(xiàn)y2-x2=2的焦點(diǎn)為(0,±2),
∵a>0,
∴$\frac{1}{4a}$=2,
∴a=$\frac{1}{8}$,
故選:D.

點(diǎn)評(píng) 本題考查有圓錐曲線(xiàn)的方程求圓錐曲線(xiàn)中的參數(shù)、圓錐曲線(xiàn)的共同特征等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)Q(x0,1),若在圓O:x2+y2=1上存在點(diǎn)P,使得∠OQP=60°,則x0的取值范圍是( 。
A.[-$\frac{1}{3}$,$\frac{1}{3}$]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]D.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某市擬定2016年城市建設(shè)A,B,C三項(xiàng)重點(diǎn)工程,該市一大型城建公司準(zhǔn)備參加這三個(gè)工程的競(jìng)標(biāo),假設(shè)這三個(gè)工程競(jìng)標(biāo)成功與否相互獨(dú)立,該公司對(duì)A,B,C三項(xiàng)重點(diǎn)工程競(jìng)標(biāo)成功的概率分別為a,b,$\frac{1}{4}$(a>b),已知三項(xiàng)工程都競(jìng)標(biāo)成功的概率為$\frac{1}{24}$,至少有一項(xiàng)工程競(jìng)標(biāo)成功的概率為$\frac{3}{4}$.
(1)求a與b的值;
(2)公司準(zhǔn)備對(duì)該公司參加A,B,C三個(gè)項(xiàng)目的競(jìng)標(biāo)團(tuán)隊(duì)進(jìn)行獎(jiǎng)勵(lì),A項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)2萬(wàn)元,B項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)4萬(wàn)元,C項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)6萬(wàn)元,求競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.把函數(shù)y=sin($\frac{π}{4}$-2x)向右平移$\frac{π}{8}$個(gè)單位,然后把橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,則所得到的函數(shù)的解析式為y=cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{m+i}{1+i}$對(duì)應(yīng)的點(diǎn)位于第四象限,則實(shí)數(shù)m的取值范圍是m>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在等比數(shù)列{an}中,若有an+an+1=3•($\frac{1}{2}$)n,則a5=( 。
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,在復(fù)平面內(nèi),復(fù)數(shù)z1,z2對(duì)應(yīng)的向量分別是$\overrightarrow{OA}$,$\overrightarrow{OB}$.設(shè)復(fù)數(shù)z=$\frac{{z}_{1}}{{z}_{2}}$,若a-z為純虛數(shù),則實(shí)數(shù)a的值為( 。
A.$\frac{3}{2}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,拋物線(xiàn)x2=4$\sqrt{6}$y的焦點(diǎn)B是雙曲線(xiàn)虛軸上的一個(gè)頂點(diǎn),線(xiàn)段BF與雙曲線(xiàn)C的右支交于點(diǎn)A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,則雙曲線(xiàn)C的方程為( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題p:?α∈R,sin(π-α)≠-sinα,命題q:?x∈[0,+∞),sinx>x,則下面結(jié)論正確的是( 。
A.¬p∨q是真命題B.p∨q是真命題C.¬p∧q是真命題D.q是真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案