1.某市擬定2016年城市建設(shè)A,B,C三項(xiàng)重點(diǎn)工程,該市一大型城建公司準(zhǔn)備參加這三個(gè)工程的競(jìng)標(biāo),假設(shè)這三個(gè)工程競(jìng)標(biāo)成功與否相互獨(dú)立,該公司對(duì)A,B,C三項(xiàng)重點(diǎn)工程競(jìng)標(biāo)成功的概率分別為a,b,$\frac{1}{4}$(a>b),已知三項(xiàng)工程都競(jìng)標(biāo)成功的概率為$\frac{1}{24}$,至少有一項(xiàng)工程競(jìng)標(biāo)成功的概率為$\frac{3}{4}$.
(1)求a與b的值;
(2)公司準(zhǔn)備對(duì)該公司參加A,B,C三個(gè)項(xiàng)目的競(jìng)標(biāo)團(tuán)隊(duì)進(jìn)行獎(jiǎng)勵(lì),A項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)2萬(wàn)元,B項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)4萬(wàn)元,C項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)6萬(wàn)元,求競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額的分布列與數(shù)學(xué)期望.

分析 (1)由題意利用相互獨(dú)立事件概率乘法公式和對(duì)立事件概率計(jì)算公式列出方程組,能求出a與b的值.
(2)由題意,令競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額為隨機(jī)變量X,則X的值可以為0,2,4,6,8,10,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).

解答 解:(1)由題意得$\left\{\begin{array}{l}{\frac{1}{4}ab=\frac{1}{24}}\\{1-(1-a)(1-\frac{1}{4})(1-b)=\frac{3}{4}}\end{array}\right.$,
由a>b,解得a=$\frac{1}{2}$,b=$\frac{1}{3}$.
(2)由題意,令競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額為隨機(jī)變量X,則X的值可以為0,2,4,6,8,10,12,
P(X=0)=$\frac{1}{2}×\frac{2}{3}×\frac{3}{4}=\frac{1}{4}$,
P(X=2)=$\frac{1}{2}×\frac{2}{3}×\frac{3}{4}$=$\frac{1}{4}$,
P(X=4)=$\frac{1}{2}×\frac{1}{3}×\frac{3}{4}$=$\frac{1}{8}$,
P(X=6)=$\frac{1}{2}×\frac{2}{3}×\frac{1}{4}+\frac{1}{2}×\frac{1}{3}×\frac{3}{4}$=$\frac{5}{24}$,
P(X=8)=$\frac{1}{2}×\frac{2}{3}×\frac{1}{4}$=$\frac{1}{12}$,
P(X=10)=$\frac{1}{2}×\frac{1}{3}×\frac{1}{4}$=$\frac{1}{24}$,
P(X=12)=$\frac{1}{2}×\frac{1}{3}×\frac{1}{4}$=$\frac{1}{24}$,
∴X的分布列為:

 X 0 2 4 6 8 10 12
 P $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{5}{24}$ $\frac{1}{12}$ $\frac{1}{24}$ $\frac{1}{24}$
E(X)=$0×\frac{1}{4}+2×\frac{1}{4}+4×\frac{1}{8}$+$6×\frac{5}{24}+8×\frac{1}{12}+10×\frac{1}{24}+12×\frac{1}{24}$=$\frac{23}{6}$.

點(diǎn)評(píng) 本題考查相互獨(dú)立事件、離散型隨機(jī)變量分布列與期望等基礎(chǔ)知識(shí),意在考查學(xué)生的運(yùn)算求解能力、審讀能力、獲取數(shù)據(jù)信息的能力,以及方程思想與分類討論思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在四棱錐P-ABCD中,AD∥BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2$\sqrt{3}$,∠DAC=30°,M為PB中點(diǎn).
(1)證明:AM∥平面PCD;
(2)若二面角M-PC-D的余弦值為-$\frac{{\sqrt{6}}}{4}$,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=|2x+1|+|2x-a|(a>0),g(x)=x+2
(1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集;
(2)當(dāng)x∈(-$\frac{1}{2}$,$\frac{a}{2}$)時(shí)f(x)≤g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知△ABC中,邊a,b,c的對(duì)角分別為A,B,C,且a=$\sqrt{2}$,c=$\sqrt{6}$,C=$\frac{2π}{3}$,則△ABC的面積S=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.等比數(shù)列{an}的前n項(xiàng)和為Sn,且S3=39,a2=9,則公比q等于$\frac{1}{3}$或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|2x-a|+|2x+1|,g(x)=2-|x-1|.
(I)解不等式:|g(x)|<1;
(Ⅱ)若存在x1∈R,x2∈R,使得f(x1)≤g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四邊形ABCD與BDEF均為菱形,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:AC⊥平面BDEF;
(2)設(shè)AB=BF=a,求四面體A-BCF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知拋物線y=ax2(a>0)的焦點(diǎn)恰好為雙曲線y2-x2=2的一個(gè)焦點(diǎn),則a的值為(  )
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示,直線l經(jīng)過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F,且與拋物線交于點(diǎn)P,Q兩點(diǎn),由P,Q分別作拋物線的切線交于M,如果|PF|=a,|QF|=b,則|MF|的值為( 。
A.a+bB.$\frac{1}{2}(a+b)$C.abD.$\sqrt{ab}$

查看答案和解析>>

同步練習(xí)冊(cè)答案