【題目】如圖,直角梯形中, , , ,等腰梯形中, , , ,且平面平面.
(1)求證: 平面;
(2)若與平面所成角為,求二面角的余弦值.
【答案】(1)證明見解析;(2) .
【解析】試題分析:
(1)由平面平面可得平面,從而得到.又, ,故由線面垂直的判定定理可得平面.(2)設(shè),由題意可證得四邊形為平行四邊形,從而得平面,則為與平面所成的角,由,得.建立空間直角坐標(biāo)系,求得平面和平面的法向量,根據(jù)兩向量夾角的余弦值可求得二面角的余弦值.
試題解析:
(1)證明:∵平面平面,平面平面, ,
∴平面,
又平面,
∴,
又, ,
∴平面.
(2)解:設(shè),
∵四邊形為等腰梯形, , ,
∴, ,
∵,
∴四邊形為平行四邊形,
∴,
又平面,
∴平面,
∴為與平面所成的角,
∴,
又,
∴.
由兩兩垂直可建立如圖所示的空間直角坐標(biāo)系,
則, , , ,
∴, ,
∵平面,
∴平面的法向量為.
設(shè)平面的一個(gè)法向量為,
由 得 ∴
令,得.
∴.
由圖形知二面角為銳角,
∴二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為y= 若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.
(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?
(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a(1≤a≤4)個(gè)單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(I)當(dāng)a=2時(shí),求曲線y = 在點(diǎn)(0,f(0))處的切線方程;
(II)求函數(shù)在區(qū)間[0 , e -1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, 平面, .過的平面交于點(diǎn),交于點(diǎn).
(l)求證: 平面;
(Ⅱ)求證: ;
(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿足直線與斜率之積為.試判斷直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知, ,函數(shù).
(Ⅰ)當(dāng), 時(shí),解關(guān)于的不等式;
(Ⅱ)若函數(shù)的最大值為2,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個(gè)紅包,每個(gè)紅包金額為元,.已知在每輪游戲中所產(chǎn)生的個(gè)紅包金額的頻率分布直方圖如圖所示.
(1)求的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個(gè)紅包,其中金額在的紅包個(gè)數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)準(zhǔn)備參加考試,在正式考試之前進(jìn)行了十次模擬測(cè)試,測(cè)試成績(jī)?nèi)缦拢?/span>
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)畫出甲、乙兩人成績(jī)的莖葉圖,求出甲同學(xué)成績(jī)的平均數(shù)和方差,并根據(jù)莖葉圖,寫出甲、乙兩位同學(xué)平均成績(jī)以及兩位同學(xué)成績(jī)的中位數(shù)的大小關(guān)系的結(jié)論;
(2)規(guī)定成績(jī)超過127為“良好”,現(xiàn)在老師分別從甲、乙兩人成績(jī)中各隨機(jī)選出一個(gè),求選出成績(jī)“良好”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
(注:方差,其中為的平均數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com