1.已知函數(shù)y=f(x)的定義域為{x|x∈R,且x≠0},且滿足f(x)-f(-x)=0,當(dāng)x>0時,f(x)=lnx-x+1,則函數(shù)y=f(x)的大致圖象為(  )
A.B.
C.D.

分析 利用函數(shù)的奇偶性排除選項,然后利用特殊值判斷點(diǎn)的坐標(biāo)即可得到結(jié)果.

解答 解:函數(shù)y=f(x)的定義域為{x|x∈R,且x≠0},且滿足f(x)-f(-x)=0,可知函數(shù)是偶函數(shù),選項A、B錯誤,當(dāng)x>0時,f(x)=lnx-x+1,當(dāng)x=2時,f(2)=ln2-2+1<0,
所以C錯誤,D正確.
故選:D.

點(diǎn)評 本題考查函數(shù)的圖形的判斷與應(yīng)用,注意函數(shù)的奇偶性以及特殊值的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.C ${\;}_{n}^{0}$C${\;}_{n}^{n}$+C${\;}_{n}^{1}$C${\;}_{n}^{n-1}$+C${\;}_{n}^{2}$C${\;}_{n}^{n-2}$+…+C${\;}_{n}^{n-1}$C${\;}_{n}^{1}$+C${\;}_{n}^{n}$C${\;}_{n}^{0}$等于( 。
A.C${\;}_{2n}^{n-1}$+C${\;}_{2n}^{n+1}$B.(C${\;}_{2n}^{n}$)2
C.C${\;}_{2n}^{n}$D.2C${\;}_{2n-1}^{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義域為R的可導(dǎo)函數(shù)的導(dǎo)函數(shù)y=f(x)為f'(x),滿足f(x)>f'(x),且f(0)=1,則不等式f(x)<ex的解集為(  )
A.(-∞,2)B.(2,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若a、b、c∈R,a>b,則下列不等式成立的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.$\frac{1}{{a}^{2}}$>$\frac{1}{^{2}}$C.$\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$D.a|c|>b|c|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知一個圓臺的上、下底面半徑分別為2cm,4cm,高為6cm,則圓臺的體積為56π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知在數(shù)軸上0和3之間任取一實數(shù)x,則使“l(fā)og2x<1”的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{2}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
(1)求函數(shù)y=f(x)在[0,$\frac{π}{2}$]上的最大值和最小值;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足c=2,a=3,f(B)=0,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x2-2x-3<0},B={y|y=$\sqrt{{x^2}+1}$,x∈R},則(∁RB)∩A=( 。
A.{x|-1<x<1}B.{x|-1<x≤1}C.{x|1≤x<3}D.{x|-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若直線y=x+b與曲線$y=3-\sqrt{4x-{x^2}}$有2個不同的公共點(diǎn),則實數(shù)b的取值范圍是(1-2$\sqrt{2}$,-1].

查看答案和解析>>

同步練習(xí)冊答案