【題目】已知函數(shù)
(1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間[-2,4]上的最大值;
(2)當(dāng)時(shí),若在區(qū)間(-1,1)上不單調(diào),求的取值范圍.
【答案】.解:(Ⅰ)…………………………………………1分
………………………………2分
∴a=0或2. ………………………………………………………………………4分
(Ⅱ)∵(1,f(1))是切點(diǎn),∴1+f(1)-3=0, ∴f(1)=2…………………5分
∵切線方程x+y-3=0的斜率為-1,
……………………………7分
…………8分……………………………………9分
∴y=f(x)在區(qū)間[-2,4]上的最大值為8. …………………………………………10分
(Ⅲ)因?yàn)楹瘮?shù)f(x)在區(qū)間(-1,1)不單調(diào),所以函數(shù)在(-1,1)上存在零點(diǎn).
而=0的兩根為a-1,a+1,區(qū)間長(zhǎng)為2,
∴在區(qū)間(-1,1)上不可能有2個(gè)零點(diǎn). ……………………………11分
………………………………12分
……………………………………………14分
【解析】
(1)先利用的圖象在點(diǎn)處的切線方程為求出,再求函數(shù)在區(qū)間上的最大值.(2)由題得得或,再解不等式 或 得解.
(1)由已知得 , ,
, ,
令, 得或2,
又 , ,
.
(2)得或,
若在上不單調(diào),則在上有解,
或 ,
或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,H是直角頂點(diǎn))來(lái)處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計(jì)要求管道的接口H是的中點(diǎn),點(diǎn)E,F分別落在線段上.已知,記.
(1)試將污水管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;
(2)已知,求此時(shí)管道的長(zhǎng)度l;
(3)當(dāng)取何值時(shí),鋪設(shè)管道的成本最低?并求出此時(shí)管道的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若數(shù)列和滿足則稱數(shù)列是數(shù)列的“伴隨數(shù)列”.
已知數(shù)列是數(shù)列的伴隨數(shù)列,試解答下列問(wèn)題:
(1)若,,求數(shù)列的通項(xiàng)公式;
(2)若,為常數(shù),求證:數(shù)列是等差數(shù)列;
(3)若,數(shù)列是等比數(shù)列,求的數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)三次函數(shù)f(x)=ax3+bx2+cx+1的導(dǎo)函數(shù)為f(x)=3ax(x-2),若函數(shù)y=f(x)共有三個(gè)不同的零點(diǎn),則a的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界那么大,我想去看看,每年高考結(jié)束后,處于休養(yǎng)狀態(tài)的高中畢業(yè)生旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見(jiàn)高中畢業(yè)生旅游是一個(gè)巨大的市場(chǎng).為了解高中畢業(yè)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門(mén)隨機(jī)抽取了某市的1000名畢業(yè)生進(jìn)行問(wèn)卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(1)求所得樣本的中位數(shù)(精確到百元);
(2)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該市共有高中畢業(yè)生35000人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在 8100元以上;
(3)已知本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的8名學(xué)生中有5名女生,3名男生, 現(xiàn)想選其中3名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面四邊形ABCD中,已知A=,B=,AB=6.在AB邊上取點(diǎn)E,使得BE=1,連接EC,ED.若∠CED=,EC=.
(1)求sin∠BCE的值;
(2)求CD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,若橢圓上一點(diǎn)滿足,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作軸的垂線,交橢圓于,求證:存在實(shí)數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),分別是橢圓 的長(zhǎng)軸端點(diǎn)、短軸端點(diǎn),為坐標(biāo)原點(diǎn),若,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如果斜率為的直線交橢圓于不同的兩點(diǎn) (都不同于點(diǎn)),線段的中點(diǎn)為,設(shè)線段的垂線的斜率為,試探求與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)的直線與圓相交于兩點(diǎn),過(guò)點(diǎn)且與垂直的直線與圓的另一交點(diǎn)為.
(1)當(dāng)點(diǎn)坐標(biāo)為時(shí),求直線的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com