【題目】已知拋物線,為其焦點,為其準線,過任作一條直線交拋物線于兩點,、分別為、在上的射影,為的中點,給出下列命題:
(1);(2);(3);
(4)與的交點的軸上;(5)與交于原點.
其中真命題的序號為_________.
【答案】(1)(2)(3)(4)(5)
【解析】
(1)由、在拋物線上,根據(jù)拋物線的定義可知,,從而有相等的角,由此可判斷;
(2)取的中點,利用中位線即拋物線的定義可得,從而可得;
(3)由(2)知,平分,從而可得,根據(jù),利用垂直于同一直線的兩條直線平行,可得結(jié)論;
(4)取與軸的交點,可得,可得出的中點在軸上,從而得出結(jié)論;
(5)設(shè)直線的方程為,設(shè)點、,證明出、、三點共線,同理得出、、三點共線,由此可得出結(jié)論.
(1)由于、在拋物線上,且、分別為、在準線上的射影,
根據(jù)拋物線的定義可知,,則,,
,,則,
即,,則,即,(1)正確;
(2)取的中點,則,,即,
(2)正確;
(3)由(2)知,,,
,,,
平分,,由于,,(3)正確;
(4)取與軸的交點,則,軸,可知,
,即點為的中點,由(3)知,平分,過點,
所以,與的交點的軸上,(4)正確;
(5)設(shè)直線的方程為,設(shè)點、,則點、,
將直線的方程與拋物線的方程聯(lián)立,消去得,,
由韋達定理得,,
直線的斜率為,
直線的斜率為,,
則、、三點共線,同理得出、、三點共線,
所以,與交于原點,(5)正確.
綜上所述,真命題的序號為:(1)(2)(3)(4)(5).
故答案為:(1)(2)(3)(4)(5).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點和上頂點分別為,定義:為橢圓的“特征三角形”,如果兩個橢圓的特征三角形是相似三角形,那么稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比,已知點是橢圓的一個焦點,且上任意一點到它的兩焦點的距離之和為4
(1)若橢圓與橢圓相似,且與的相似比為2:1,求橢圓的方程.
(2)已知點是橢圓上的任意一點,若點是直線與拋物線異于原點的交點,證明:點一定在雙曲線上.
(3)已知直線,與橢圓相似且短半軸長為的橢圓為,是否存在正方形,(設(shè)其面積為),使得在直線上,在曲線上?若存在,求出函數(shù)的解析式及定義域;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在長方體中,,點為上的一個動點,平面與棱交于點,給出下列命題:
①四棱錐的體積為;
②存在唯一的點,使截面四邊形的周長取得最小值;
③當點不與,重合時,在棱上均存在點,使得平面
④存在唯一一點,使得平面,且
其中正確的命題是_____________(填寫所有正確的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點滿足方程.
(1)求點M的軌跡C的方程;
(2)作曲線C關(guān)于軸對稱的曲線,記為,在曲線C上任取一點,過點P作曲線C的切線l,若切線l與曲線交于A,B兩點,過點A,B分別作曲線的切線,,且,的交點為Q,試問以Q為直角的是否存在,若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線(為參數(shù)),將曲線上所有點橫坐標縮短為原來的,縱坐標不變,得到曲線,過點且傾斜角為的直線與曲線交于、兩點.
(1)求曲線的參數(shù)方程和的取值范圍;
(2)求中點的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)不經(jīng)過點的直線l與曲線C相交于A,B兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棋盤上標有第、、、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時,游戲結(jié)束.設(shè)棋子位于第站的概率為.
(1)當游戲開始時,若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)求、的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com