【題目】在平面直角坐標系xOy中,點滿足方程.
(1)求點M的軌跡C的方程;
(2)作曲線C關于軸對稱的曲線,記為,在曲線C上任取一點,過點P作曲線C的切線l,若切線l與曲線交于A,B兩點,過點A,B分別作曲線的切線,,且,的交點為Q,試問以Q為直角的是否存在,若存在,求出點P的坐標;若不存在,請說明理由.
【答案】(1),(2)存在,或
【解析】
(1)平方化簡,即可求解;
(2)根據(jù)導數(shù)的幾何意義求出切線l的方程,與曲線方程聯(lián)立,由韋達定理,確定兩交點A,B坐標關系,再利用導數(shù)的幾何意義,求出切線,的方程,并聯(lián)立求出Q點坐標,
利用,結合A,B坐標關系,即可求解.
(1)由,
兩邊平方并化簡,得,即,
所以點M的軌跡C的方程為.
(2)依題可設點,,
曲線C切于點P的切線l的斜率為,
切線l的方程為,
整理得
依題可知曲線,
聯(lián)立方程組,,
設,,所以,.(*)
設曲線上點處的切線斜率為,
切線方程為,整理得,
同理可得曲線上點處的切線方程為,
聯(lián)立方程組,,
又由(*)式得,
所以,的交點Q的坐標為,
假設以Q為直角的存在,則有,
而,,
所以由,得,
即,
即,
化簡得,
因為由題得,所以或,
所以點P的坐標為或.
科目:高中數(shù)學 來源: 題型:
【題目】設F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,點A為橢圓C的左頂點,點B為橢圓C的上頂點,且|AB|=,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設直線y=kx+2與橢圓交于P、Q兩點,且OP⊥OQ,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解貴州省某州2020屆高三理科生的化學成績的情況,該州教育局組織高三理科生進行了摸底考試,現(xiàn)從參加考試的學生中隨機抽取了100名理科生,,將他們的化學成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.
(1)求a的值;
(2)記A表示事件“從參加考試的所有理科生中隨機抽取一名學生,該學生的化學成績不低于70分”,試估計事件A發(fā)生的概率;
(3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內的學生中抽取10名,再從這10名學生中隨機抽取4名,記這4名理科生成績在內的人數(shù)為X,求X的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項惠民工程,持有旅游年卡一年內可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費支出情況單位:百元,相關部門對已游覽某簽約景區(qū)的游客進行隨機問卷調查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) | 10 | 390 | 400 | 188 | 12 |
求所得樣本的中位數(shù)精確到百元;
根據(jù)樣本數(shù)據(jù),可近似地認為市民的旅游費用支出服從正態(tài)分布,若該市總人口為750萬人,試估計有多少市民每年旅游費用支出在7500元以上;
若年旅游消費支出在百元以上的游客一年內會繼續(xù)來該景點游玩現(xiàn)從游客中隨機抽取3人,一年內繼續(xù)來該景點游玩記2分,不來該景點游玩記1分,將上述調查所得的頻率視為概率,且游客之間的選擇意愿相互獨立,記總得分為隨機變量X,求X的分布列與數(shù)學期望.
參考數(shù)據(jù):,;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:過點,左焦點
(1)求橢圓C的標準方程;
(2)過點F作于x軸不重合的直線l,l與橢圓交于A,B兩點,點A在直線上的投影N與點B的連線交x軸于D點,D點的橫坐標是否為定值?若是,請求出定值;若不是,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,為其焦點,為其準線,過任作一條直線交拋物線于兩點,、分別為、在上的射影,為的中點,給出下列命題:
(1);(2);(3);
(4)與的交點的軸上;(5)與交于原點.
其中真命題的序號為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在正常數(shù),使得對任意的,都有成立,我們稱函數(shù)為“同比不減函數(shù)”.
(1)求證:對任意正常數(shù),都不是“同比不減函數(shù)”;
(2)若函數(shù)是“同比不減函數(shù)”,求的取值范圍;
(3)是否存在正常數(shù),使得函數(shù)為“同比不減函數(shù)”,若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學經典《九章算術》系統(tǒng)地總結了戰(zhàn)國、秦、漢時期的數(shù)學成就,書中將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個陽馬與一個鱉臑的組合體,已知平面,四邊形為正方形,,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com