已知D、E、F分別為△ABC的三邊BC、AC、AB的中點(diǎn),求證:
AD
+
BE
+
CF
=
0
考點(diǎn):向量的三角形法則
專題:平面向量及應(yīng)用
分析:根據(jù)向量的三角形法則證明.
解答: 證明:因?yàn)镈、E、F分別為△ABC的三邊BC、AC、AB的中點(diǎn),
所以
AD
=
1
2
(
AB
+
AC
)
,
BE
=
1
2
(
BA
+
BC
)
,
CF
=
1
2
(
CB
+
CA
)
,
三式相加得
AD
+
BE
+
CF
=
1
2
(
AB
+
AC
+
BA
+
BC
+
CB
+
CA
)
=
0
點(diǎn)評(píng):本題考查了三角形中線的性質(zhì)以及相反向量的和為
0
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角△ABC中,∠ACB=90°,∠ABC=30°,D是AB的中點(diǎn),F(xiàn)是BC上的一點(diǎn),AF交CD于點(diǎn)E,且CE=DE,將△ACD沿CD折起,使二面角A-CD-B的大小為120°.

(1)求證:平面AEF⊥平面CBD;
(2)求二面角F-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行以下程序框圖,所得的結(jié)果為( 。
A、1067B、2100
C、2101D、4160

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA垂直⊙O所在平面ABC,AB為⊙O的直徑,PA=AB,BD=
1
4
BP,C是
AB
的中點(diǎn).
(1)證明:BP⊥平面COD;
(2)求平面PAC與平面COD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一口袋中裝有5個(gè)白球和3個(gè)紅球,這些球除顏色外完全相同.現(xiàn)從袋中往外取球,每次任取一個(gè)記下顏色后放回,直到紅球出現(xiàn)10次時(shí)停止,設(shè)停止時(shí)共取了ξ次球,則P(ξ=12)=
 
.(用式子作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosωx-sinωx,sinωx),
b
=(-cosωx-sinωx,2
3
cosωx),設(shè)函數(shù)f(x)=
a
b
+λ(x∈R)的圖象關(guān)于直線x=π對稱,且經(jīng)過點(diǎn)(
π
4
,0),其中ω,λ為常數(shù),ω∈(
1
2
,1).
(1)求函數(shù)f(x)的解析式;
(2)先將函數(shù)y=f(x)的圖象向右平移
π
4
個(gè)單位,然后將所得圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,最后將所得圖象向上平移
2
個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)在區(qū)間[
4
,
4
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2sin(x+
θ
2
),
3
),
b
=(cos(x+
θ
2
),2cos2(x+
θ
2
)),f(x)=
a
b
-
3

(1)求f(x)的解析式
(2)若0<θ<π,求θ使f(x)為偶函數(shù),并求此時(shí)f(x)=1,x∈[-π,π]的角的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
+
1+x
,若x,y滿足f(x+1)-f(y)>0,則x2+y2-2x+1的取值范圍( 。
A、(1,10)
B、[2,10]
C、(
2
,
10
D、[
2
,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)離心率為
3
,焦點(diǎn)坐標(biāo)為(-5
3
,0)
(5
3
,0)
的雙曲線
(2)離心率e=
1
2
,準(zhǔn)線方程為y=±4
3
的橢圓
(3)焦點(diǎn)在y軸的正半軸上,焦點(diǎn)到準(zhǔn)線的距離為4的拋物線.

查看答案和解析>>

同步練習(xí)冊答案