分析 (1)由條件可求周期,利用周期公式可求ω=1,由f(x)的圖象經(jīng)過點(diǎn)($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$),可求Asin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$.
解得A=1,即可得解函數(shù)解析式.
(2)由已知利用三角函數(shù)恒等變換的應(yīng)用化簡可得sin$α=\frac{1}{2}$.結(jié)合范圍α∈(0,π),即可得解α的值.
解答 解:(1)由條件,周期T=2π,即$\frac{2π}{ω}$=2π,所以ω=1,即f(x)=Asin(x+$\frac{π}{3}$).
因?yàn)閒(x)的圖象經(jīng)過點(diǎn)($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$),所以Asin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$.
∴A=1,
∴f(x)=sin(x+$\frac{π}{3}$).
(2)由f(α)+$\sqrt{3}$f(α-$\frac{π}{2}$)=1,得sin(α+$\frac{π}{3}$)+$\sqrt{3}$sin(α-$\frac{π}{2}$+$\frac{π}{3}$)=1,
即sin(α+$\frac{π}{3}$)-$\sqrt{3}$cos(α+$\frac{π}{3}$)=1,可得:2sin[($α+\frac{π}{3}$)-$\frac{π}{3}$]=1,即sin$α=\frac{1}{2}$.
因?yàn)棣痢剩?,π),解得:α=$\frac{π}{6}$或$\frac{5π}{6}$.
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)恒等變換的應(yīng)用及正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
雕刻量n | 210 | 230 | 250 | 270 | 300 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$),k∈Z | |
B. | (2kπ-$\frac{π}{6}$,2kπ)∪(2kπ,2kπ+π)∪(2kπ+π,2kπ+$\frac{7}{6}$π),k∈Z | |
C. | (2kπ-$\frac{5π}{6}$,2kπ-$\frac{π}{6}$),k∈Z | |
D. | (2kπ-$\frac{7π}{6}$,2kπ-π)∪(2kπ-π,2kπ)∪(2kπ,2kπ+$\frac{π}{6}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com