4.若函數(shù)f(x)=e-2x,則f′(x)=( 。
A.e-2xB.-e-2xC.2e-2xD.-2e-2x

分析 由復(fù)合函數(shù)求導(dǎo)法則,即可求得答案.

解答 解:f(x)=e-2x,求導(dǎo),f′(x)=(-2x)′e-2x=-2e-2x,
故選:D.

點評 本題考查復(fù)合函數(shù)求導(dǎo)法則,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.我國政府對PM 2.5采用如表標(biāo)準(zhǔn):
PM 2.5日均值m(微克/立方米)空氣質(zhì)量等級
m<35一級
35≤m≤75二級
m>75超標(biāo)
某市環(huán)保局從一年365天的市區(qū)PM 2.5監(jiān)測數(shù)據(jù)中,隨機抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).
(1)用樣本數(shù)據(jù)來估計全年大概有多少天空氣質(zhì)量超標(biāo)?
(2)求樣本數(shù)據(jù)的中位數(shù);
(3)從樣本數(shù)據(jù)中任取2天的數(shù)據(jù),記ξ為這2天里空氣質(zhì)量達到一級的天數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線M的參數(shù)方程為$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓N的方程ρ2-6ρsinθ=-8.求過拋物線M的焦點和圓心N的直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a∈R,f(x)=ax2-lnx,g(x)=ex-ax.
(1)當(dāng)曲線y=f(x)在點(1,f(1))處的切線的斜率大于-1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)•g(x)>0對x∈(0,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等比數(shù)列{an}中,已知a1=1,a4=27,則a3=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.cos$\frac{7}{6}$π=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=xlnx+ax2-1,且f′(1)=-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值;
(Ⅲ)證明:函數(shù)y=f(x)-xex+x2的圖象在直線y=-2x-1的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)平面內(nèi)$\frac{2+i}{1-i}$的共軛復(fù)數(shù)所對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義在R上的函數(shù)y=f(x)滿足f(4+x)=f(-x),(x-2)f′(x)>0,則“f(x)>f(1)”是“x<1”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分又不必要

查看答案和解析>>

同步練習(xí)冊答案