9.在平面直角坐標(biāo)系xOy中,直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,求圓C的方程
(2)若過原點的直線m與圓C有公共點,求直線m的斜率k的取值范圍.

分析 (1)聯(lián)立兩直線方程求出圓心坐標(biāo),直接代入圓的標(biāo)準(zhǔn)方程得答案;
(2)設(shè)出過原點的直線方程,由圓心到直線的距離等于半徑求得斜率,則答案可求.

解答 解:(1)聯(lián)立$\left\{\begin{array}{l}{y=2x-4}\\{y=x-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$.
∴圓心坐標(biāo)為(3,2),由半徑r=1,
∴圓C的方程為(x-3)2+(y-2)2=1;
(2)如圖,
設(shè)直線m的方程為y=kx,
由圓心(3,2)到直線kx-y=0的距離d=$\frac{|3k-2|}{\sqrt{{k}^{2}+1}}=1$,
解得k=$\frac{3±\sqrt{3}}{4}$.
∴過原點的直線m與圓C有公共點,直線m的斜率k的取值范圍是[$\frac{3-\sqrt{3}}{4},\frac{3+\sqrt{3}}{4}$].

點評 本題考查了圓的切線方程,點到直線的距離公式,以及圓與圓的位置關(guān)系的判定,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),則$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=( 。
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=-2+i所對應(yīng)的點在復(fù)平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)x,y滿足2x+y=8,當(dāng)2≤x≤3時,$\frac{y+1}{x-1}$的取值范圍是$[\frac{3}{2},5]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C的對邊分別為a,b,c.已知A=45°,cosB=$\frac{4}{5}$.
(1)求cosC的值;
(2)若BC=20,D為AB的中點,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+3cost\\ y=-2+3sint\end{array}\right.$(t為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=5.
(1)求圓C的普通方程及直線l的直角坐標(biāo)方程;
(2)求圓心C到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=lg(x2-3x+m)的定義域為R,則實數(shù)m的取值范圍是($\frac{9}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖是判斷“實驗數(shù)”的程序框圖,在[30,80]內(nèi)的所有整數(shù)中,“實驗數(shù)”的個數(shù)是12.

查看答案和解析>>

同步練習(xí)冊答案