【題目】時(shí)下,租車已經(jīng)成為新一代的流行詞,租車自駕游也慢慢流行起來,某小車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是,不超過2天按照300元計(jì)算;超過兩天的部分每天收費(fèi)標(biāo)準(zhǔn)為100元(不足1天的部分按1天計(jì)算).有甲乙兩人相互獨(dú)立來該租車點(diǎn)租車自駕游(各租一車一次),設(shè)甲、乙不超過2天還車的概率分別為;2天以上且不超過3天還車的概率分別;兩人租車時(shí)間都不會(huì)超過4天.
(1)求甲所付租車費(fèi)用大于乙所付租車費(fèi)用的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
【答案】(1);(2)分布列見解析,.
【解析】
試題分析:(1)由甲所付租車費(fèi)用大于乙所付租車費(fèi)用知可分為乙租車2天與乙租車3天兩種情況,由此能求出所求概率;(2)首先求得的所有可能取值,然后分別求出相應(yīng)的概率,由此能求出的分布列與數(shù)學(xué)期望.
試題解析:(1)因?yàn)榧姿蹲廛囐M(fèi)用大于乙所付租車費(fèi)用,
當(dāng)乙租車2天內(nèi)時(shí),則甲租車3或4天,其概率為;
當(dāng)乙租車3天時(shí),則甲租車4天,其概率為;
則甲所付租車費(fèi)用大于乙所付租車費(fèi)用的概率為............5分
(2)設(shè)甲,乙兩個(gè)所付的費(fèi)用之和為可為600,700,800,900,1000,..................6分
............................ 8分
故的分布列為
600 | 700 | 800 | 900 | 1000 | |
...............................................10分
故的期望為........12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,橢圓與軸與左焦點(diǎn)與點(diǎn)的距離為.
(1)求橢圓方程;
(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積為時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()的圖象與直線()相切,并且切點(diǎn)橫坐標(biāo)依次成公差為的等差數(shù)列,且的最大值為1.
(1),求函數(shù)的單調(diào)遞增區(qū)間;
(2)將的圖象向左平移個(gè)單位,得到函數(shù)的圖象,若函數(shù)在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(1)設(shè)分別表示甲、乙抽到的牌的數(shù)字,寫出甲乙二人抽到的牌的所有情況;
(2)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?
(3)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝,你認(rèn)為此游戲是否公平,說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四棱錐中,底面是正方形, .
(1)如圖2,設(shè)點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),求證: 平面;
(2)已知網(wǎng)格紙上小正方形的邊長為,請(qǐng)你在網(wǎng)格紙上用粗線畫圖1中四棱錐的府視圖(不需要標(biāo)字母),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 為正實(shí)數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求證: ;
(3)若函數(shù)有且只有個(gè)零點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱中,已知,分別為,的中點(diǎn),點(diǎn)在棱上,且.求證:
(1)直線∥平面;
(2)直線平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用兩種原料,已知每種產(chǎn)品各生產(chǎn)噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)噸甲產(chǎn)品可獲利潤3萬元,生產(chǎn)噸乙產(chǎn)品可獲利萬元,則該企業(yè)每天可獲得最大利潤為___________萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com