【題目】如圖,在四棱錐中,,平分,平面,,點上,.

(1)求證:平面;

(2)若,,求二面角的余弦值.

【答案】(1)見解析.

(2).

【解析】

(1)先根據(jù)平面,再根據(jù)已知,平面,即得,另一方面根據(jù)計算得,最后根據(jù)線面垂直判定定理得結(jié)論,(2)根據(jù)題意建立空間直角坐標系,設(shè)立各點坐標,根據(jù)方程組解得平面的一個法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系求結(jié)果.

(1)證明:因為平面,所以,

又因為,,所以平面

所以

于點,則平面,

中,,設(shè)

易證

因為,則

所以,即,

所以平面.

(2)如圖所示,以為坐標原點,分別以的方向為軸,軸正方向,建立空間直角坐標系

因為垂直平分,所以為直角三角形的斜邊上的中線

所以

因為,,由,得

,

設(shè)平面的一個法向量為,

,取,則,

由(1)可知為平面的一個法向量,

所以

由圖可知,所求二面角為銳角

所以所求二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司做了用戶對其產(chǎn)品滿意度的問卷調(diào)查,隨機抽取了20名用戶的評分,得到圖3所示莖葉圖,對不低于75的評分,認為用戶對產(chǎn)品滿意,否則,認為不滿意,

(Ⅰ)根據(jù)以上資料完成下面的2×2列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯的概率不超過5%的前提下,你是否認為“滿意與否”與“性別”有關(guān)?

附:

(Ⅱ) 估計用戶對該公司的產(chǎn)品“滿意”的概率;

(Ⅲ) 該公司為對客戶做進一步的調(diào)查,從上述對其產(chǎn)品滿意的用戶中再隨機選取2人,求這兩人都是男用戶或都是女用戶的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩焦點在軸上,且短軸的兩個頂點與其中一個焦點的連線構(gòu)成斜邊為的等腰直角三角形.

(1)求橢圓的方程;

(2)動直線交橢圓兩點,試問:在坐標平面上是否存在一個定點,使得以線段為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為了吸引大家,規(guī)定:購買一定價值的商品可以獲得一張獎券,獎券上有一個兌獎號碼,可以分別參加兩次抽獎方式相同的兌獎活動,已知甲有一張該商場的獎券,且每次兌獎活動的中獎概率都是0.05,求:

1)甲中兩次獎的概率;

2)甲中一次獎的概率;

3)甲不中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市為調(diào)查會員某年度上半年的消費情況制作了有獎?wù){(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機抽取名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的名會員消費金額(單位:萬元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費金額分成組,制作成如下的頻率分布直方圖.

(1)求該名會員上半年消費金額的平均值與中位數(shù);(以各區(qū)間的中點值代表該區(qū)間的均值)

(2)現(xiàn)采用分層抽樣的方式從前組中選取人進行消費愛好調(diào)查,然后再從前組選取的人中隨機選人,求這人都來自第組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列與數(shù)列滿足,且.

1)求數(shù)列的通項公式;

2)記,的前n項的和分別為,,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體,過對角線作平面交棱于點,交棱于點,下列正確的是(

A.平面分正方體所得兩部分的體積相等;

B.四邊形一定是平行四邊形;

C.平面與平面不可能垂直;

D.四邊形的面積有最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中)在點處的切線斜率為1.

(1)用表示;

(2)設(shè),若對定義域內(nèi)的恒成立,求實數(shù)的取值范圍;

(3)在(2)的前提下,如果,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中心在坐標原點,焦點在軸上,且過,直線與橢圓交于,兩點(,兩點不是左右頂點),若直線的斜率為時,弦的中點在直線上.

(Ⅰ)求橢圓的方程.

(Ⅱ)若以,兩點為直徑的圓過橢圓的右頂點,則直線是否經(jīng)過定點,若是,求出定點坐標,若不是,請說明理由.

查看答案和解析>>

同步練習冊答案