【題目】如圖1,在四邊形中,,,,,上的點(diǎn),,的中點(diǎn).將沿折起到的位置,使得,如圖2

1)求證:平面平面;

2)點(diǎn)在線段上,當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)計(jì)算出、的長(zhǎng),利用勾股定理證明出,利用線面垂直的判定定理可證明出平面,再利用面面垂直的判定定理可證得結(jié)論;

2)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線為軸、軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),求出平面的一個(gè)法向量的坐標(biāo),利用空間向量法結(jié)合線面角的正弦值可求得的值,然后利用空間向量法可求得二面角的余弦值.

1)因?yàn)?/span>,,所以.

,所以,

中,,,,所以

中,,,所以,所以

因?yàn)?/span>平面平面,,所以平面

平面,所以平面平面;

2)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線為軸、軸建立空間直角坐標(biāo)系如圖所示,

、、,設(shè),其中

,

設(shè)平面的一個(gè)法向量為,

,得,

,則,,所以

所以,

化簡(jiǎn)得,解得(舍),

所以,

設(shè)平面的一個(gè)法向量為,

,得,

,則,,所以

所以

由圖可知二面角為銳二面角,

所以當(dāng)直線與平面所成角的正弦值為時(shí),二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,①已知點(diǎn),直線,動(dòng)點(diǎn)滿足到點(diǎn)的距離與到直線的距離之比為;②已知圓的方程為,直線為圓的切線,記點(diǎn)到直線的距離分別為,動(dòng)點(diǎn)滿足;③點(diǎn),分別在軸,軸上運(yùn)動(dòng),且,動(dòng)點(diǎn)滿足

1)在①,②,③這三個(gè)條件中任選一個(gè),求動(dòng)點(diǎn)的軌跡方程;

2)記(1)中的軌跡為,經(jīng)過(guò)點(diǎn)的直線,兩點(diǎn),若線段的垂直平分線與軸相交于點(diǎn),求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

1)討論函數(shù)的單調(diào)性;

2)若存在與函數(shù)的圖象都相切的直線,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為,是拋物線的準(zhǔn)線與軸的交點(diǎn),直線經(jīng)過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),直線分別交軸于、兩點(diǎn),記、的面積分別為、.

1)求證:;

2)若恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄AP經(jīng)過(guò)點(diǎn),并且與圓相切.

(Ⅰ)求圓心P的軌跡C的方程;

(Ⅱ)O是坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線C交于A,B兩點(diǎn),在C上是否存在點(diǎn)Q,使得四邊形是平行四邊形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面為直角梯形,分別為的中點(diǎn).

1)求證:平面;

2)若截面與底面所成銳二面角為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形ABCD中,,,,將直角梯形ABCD(及其內(nèi)部)以AB所在直線為軸順時(shí)針旋轉(zhuǎn)90°,形成如圖所示的幾何體,其中M的中點(diǎn).

1)求證:;

2)求異面直線BMEF所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.01,0.05.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為16萬(wàn)元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬(wàn)元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬(wàn)元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.040.02.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為15萬(wàn)元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬(wàn)元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬(wàn)元.

1)若選擇生產(chǎn)線②,求生產(chǎn)成本恰好為20萬(wàn)元的概率;

2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某地區(qū)被隔離者是否需要社區(qū)非醫(yī)護(hù)人員提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位被隔離者,結(jié)果如下:

性別

是否需要

需要

40

30

不需要

160

270

0.050

0.010

0.001

3.841

6.635

10.828

1)估計(jì)該地區(qū)被隔離者中,需要社區(qū)非醫(yī)護(hù)人員提供幫助的被隔離者的比例;

2)能否有99%的把握認(rèn)為該地區(qū)的被隔離者是否需要社區(qū)非醫(yī)護(hù)人員提供幫助與性別有關(guān)?

查看答案和解析>>

同步練習(xí)冊(cè)答案