已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當(dāng)x=1時(shí),f(x)取得極值-2.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[-3,3]時(shí),f(x)<m恒成立,求實(shí)數(shù)m的取值范圍.
(I)由f(x)是R上的奇函數(shù),有f(0)=0,所以d=0,
因此f(x)=ax3+cx,對函數(shù)f(x)求導(dǎo)得f′(x)=3ax2+c,
由題意得:f(1)=-2,f′(1)=0
所以
a+c=-2
3a+c=0
解得a=1,c=-3
因此f(x)=x3-3x
(Ⅱ)f′(x)=3x2-3
令3x2-3>0,解得x<-1或x>1;
令3x2-3<0,解得-1<x<1,
因此f(x)的單調(diào)區(qū)間為(-∞,-1)和(1,+∞);
f(x)的單調(diào)減區(qū)間為(-1,1).
(Ⅲ)令f′(x)=0,得x1=-1或x2=1
當(dāng)x變化時(shí),f′(x)、f(x)的變化如下表:

從上表可知,f(x)在區(qū)間[-3,3]上的最大值是18.
原命題等價(jià)于m大于f(x)在[-3,3]上的最大值,所以m>18.
故m的取值范圍是(18,+∞)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=x3+ax+b的圖象為曲線C,直線y=kx-2與曲線C相切于點(diǎn)(1,0).則k=______;函數(shù)f(x)的解析式為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
4x
3x2+3
,x∈[0,2]

(1)求f(x)的值域;
(2)設(shè)a≠0,函數(shù)g(x)=
1
3
ax3-a2x
,x∈[0,2].若對任意x1∈[0,2],總存在x2∈[0,2],使f(x1)-g(x2)=0.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線f(x)=
1
3
x3
在x=2處切線方程的斜率是( 。
A.4B.2C.1D.
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=-x3+x2在點(diǎn)(1,0)處的切線的傾斜角為( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程x3-3x+a+1=0在x∈[-2,+∞)上有三個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=2x2-3x上點(diǎn)(1,-1)處的切線方程為( 。
A.x-y+2=0B.x-y-2=0C.x-2y-3=0D.2x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A是曲線C1:y=
a
x-2
(a>0)與曲線C2:x2+y2=5的一個(gè)公共點(diǎn).若C1在A處的切線與C2在A處的切線互相垂直,則實(shí)數(shù)a的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
2ax-a2+1
x2+1
(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a≠0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊答案